HOME

TheInfoList



OR:

A
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
-based
battery Battery most often refers to: * Electric battery, a device that provides electrical power * Battery (crime), a crime involving unlawful physical contact Battery may also refer to: Energy source *Automotive battery, a device to provide power t ...
uses
organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ Chemistry * Organic matter, matter that has come from a once-living organism, is capable of decay or is the product ...
materials instead of bulk metals to form a battery. Currently accepted metal-based batteries pose many challenges due to limited resources, negative environmental impact, and the approaching limit of progress.
Redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction ...
active polymers are attractive options for
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials de ...
s in batteries due to their synthetic availability, high-capacity, flexibility, light weight, low cost, and low toxicity. Recent studies have explored how to increase efficiency and reduce challenges to push polymeric active materials further towards practicality in batteries. Many types of polymers are being explored, including conductive, non-conductive, and radical polymers. Batteries with a combination of electrodes (one metal electrode and one polymeric electrode) are easier to test and compare to current metal-based batteries, however batteries with both a polymer cathode and anode are also a current research focus. Polymer-based batteries, including metal/polymer electrode combinations, should be distinguished from metal-polymer batteries, such as a
lithium polymer battery A lithium polymer battery, or more correctly lithium-ion polymer battery (abbreviated as LiPo, LIP, Li-poly, lithium-poly and others), is a rechargeable battery of lithium-ion technology using a polymer electrolyte instead of a liquid electrolyt ...
, which most often involve a polymeric
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dis ...
, as opposed to polymeric active materials. Organic polymers can be processed at relatively low temperatures, lowering costs. They also produce less carbon dioxide.


History

Organic batteries are an alternative to the metal reaction battery technologies, and much research is taking place in this area. An article titled "Plastic-Metal Batteries: New promise for the electric car" wrote in 1982: "Two different organic polymers are being investigated for possible use in batteries" and indicated that the demo he gave was based on work begun in 1976.
Waseda University , abbreviated as , is a private university, private research university in Shinjuku, Tokyo. Founded in 1882 as the ''Tōkyō Senmon Gakkō'' by Ōkuma Shigenobu, the school was formally renamed Waseda University in 1902. The university has numerou ...
was approached by
NEC is a Japanese multinational corporation, multinational information technology and electronics corporation, headquartered in Minato, Tokyo. The company was known as the Nippon Electric Company, Limited, before rebranding in 1983 as NEC. It prov ...
in 2001, and began to focus on the organic batteries. In 2002, NEC researcher presented a paper on Piperidinoxyl Polymer technology, and by 2005 they presented an
organic radical battery An organic radical battery (ORB) is a type of battery first developed in 2005. As of 2011, this type of battery was generally not available for the consumer, although their development at that time was considered to be approaching practical use. ORB ...
(ORB) based on a modified PTMA, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl meth-acrylate). In 2006,
Brown University Brown University is a private research university in Providence, Rhode Island. Brown is the seventh-oldest institution of higher education in the United States, founded in 1764 as the College in the English Colony of Rhode Island and Providenc ...
announced a technology based on
polypyrrole Polypyrrole (PPy) is an organic polymer obtained by oxidative polymerization of pyrrole. It is a solid with the formula H(C4H2NH)nH. It is an intrinsically conducting polymer, used in electronics, optical, biological and medical fields. History ...
. In 2007, Waseda announced a new ORB technology based on "soluble polymer, polynorborene with pendant nitroxide radical groups." In 2015 researchers developed an efficient, conductive, electron-transporting polymer. The discovery employed a "conjugated redox polymer" design with a
naphthalene Naphthalene is an organic compound with formula . It is the simplest polycyclic aromatic hydrocarbon, and is a white crystalline solid with a characteristic odor that is detectable at concentrations as low as 0.08  ppm by mass. As an aromati ...
- bithiophene polymer that has been used for transistors and solar cells. Doped with lithium ions it offered significant electronic conductivity and remained stable through 3,000 charge/discharge cycles. Polymers that conduct
holes A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
have been available for some time. The polymer exhibits the greatest
power density Power density is the amount of power (time rate of energy transfer) per unit volume. In energy transformers including batteries, fuel cells, motors, power supply units etc., power density refers to a volume, where it is often called volume p ...
for an organic material under practical measurement conditions. A battery could be 80% charged within 6 seconds. Energy density remained lower than inorganic batteries.


Electrochemistry

Like metal-based batteries, the reaction in a polymer-based battery is between a positive and a negative electrode with different redox potentials. An electrolyte transports charges between these electrodes. For a substance to be a suitable battery active material, it must be able to participate in a chemically and thermodynamically reversible redox reaction. Unlike metal-based batteries, whose redox process is based on the valence charge of the metals, the redox process of polymer-based batteries is based on a change of state of charge in the organic material. For a high energy density, the electrodes should have similar specific energies.


Classification of active materials

The active organic material could be a p-type, n-type, or b-type. During charging, p-type materials are oxidized and produce cations, while n-types are reduced and produce anions. B-type organics could be either oxidized or reduced during charging or discharging.


Charge and discharge

In a commercially available Li-ion battery, the Li+ ions are diffused slowly due to the required intercalation and can generate heat during charge or discharge. Polymer-based batteries, however, have a more efficient charge/discharge process, resulting in improved theoretical rate performance and increased cyclability.


Charge

To charge a polymer-based battery, a
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
is applied to oxidize the positive electrode and reduce the negative electrode. The electrolyte salt compensates the charges formed. The limiting factors upon charging a polymer-based battery differ from metal-based batteries and include the full oxidation of the cathode organic, full reduction of the anode organic, or consumption of the electrolyte.


Discharge

Upon discharge, the electrons go from the anode to cathode externally, while the electrolyte carries the released ions from the polymer. This process, and therefore the rate performance, is limited by the electrolyte ion travel and the electron-transfer
rate constant In chemical kinetics a reaction rate constant or reaction rate coefficient, ''k'', quantifies the rate and direction of a chemical reaction. For a reaction between reactants A and B to form product C the reaction rate is often found to have the f ...
, k0, of the reaction. This electron transfer rate constant provides a benefit of polymer-based batteries, which typically have high values on the order of 10−1 cm s−1. The organic polymer electrodes are amorphous and swollen, which allows for a higher rate of ionic diffusion and further contributes to a better rate performance. Different polymer reactions, however, have different reaction rates. While a nitroxyl radical has a high reaction rate, organodisulfades have significantly lower rates because bonds are broken and new bonds are formed. Batteries are commonly evaluated by their theoretical capacity (the total capacity of the battery if 100% of active material were utilized in the reaction). This value can be calculated as follows: C_t (mA\ h\ g^)=\frac where m is the total mass of active material, n is the number of transferred electrons per molar mass of active material, M is the molar mass of active material, and F is Faraday's constant.


Charge and discharge testing

Most polymer electrodes are tested in a metal-organic battery for ease of comparison to metal-based batteries. In this testing setup, the metal acts as the anode and either n- or p-type polymer electrodes can be used as the cathode. When testing the n-type organic, this metal-polymer battery is charged upon assembly and the n-type material is reduced during discharge, while the metal is oxidized. For p-type organics in a metal-polymer test, the battery is already discharged upon assembly. During initial charging, electrolyte salt cations are reduced and mobilized to the polymeric anode while the organic is oxidized. During discharging, the polymer is reduced while the metal is oxidized to its cation.


Types of active materials


Conductive polymers

Conductive polymers Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that Electrical conductance, conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage ...
can be n-doped or p-doped to form an electrochemically active material with conductivity due to dopant ions on a conjugated polymer backbone.
Conductive polymers Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that Electrical conductance, conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage ...
(i.e. conjugated polymers) are embedded with the redox active group, as opposed to having
pendant group In IUPAC nomenclature of chemistry, a pendant group (sometimes spelled pendent) or side group is a group of atoms attached to a backbone chain of a long molecule, usually a polymer. Pendant groups are different from pendant chains, as they are n ...
s, with the exception of sulfur
conductive polymers Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that Electrical conductance, conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage ...
. They are ideal electrode materials due to their conductivity and redox activity, therefore not requiring large quantities of inactive conductive fillers. However they also tend to have low coulombic efficiency and exhibit poor cyclability and self-discharge. Due to the poor electronic separation of the polymer's charged centers, the redox potentials of conjugated polymers change upon charge and discharge due to a dependence on the dopant levels. As a result of this complication, the discharge profile (cell voltage vs. capacity) of
conductive polymer Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage of conductive polymer ...
batteries has a sloped curve.
Conductive polymers Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that Electrical conductance, conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage ...
struggle with stability due to high levels of charge, failing to reach the ideal of one charge per monomer unit of polymer. Stabilizing additives can be incorporated, but these decrease the specific capacity.


Non-conjugated polymers with pendant groups

Despite the conductivity advantage of conjugated polymers, their many drawbacks as active materials have furthered the exploration of polymers with redox active pendant groups. Groups frequently explored include
carbonyls In organic chemistry, a carbonyl group is a functional group composed of a carbon atom double-bonded to an oxygen atom: C=O. It is common to several classes of organic compounds, as part of many larger functional groups. A compound containing a ...
,
carbazole Carbazole is an aromatic heterocyclic organic compound. It has a tricyclic structure, consisting of two six-membered benzene rings fused on either side of a five-membered nitrogen-containing ring. The compound's structure is based on the indole str ...
s,
organosulfur compounds Organosulfur compounds are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur ...
,
viologen Viologens are organic compounds with the formula (C5H4NR)2n+. In some viologens, the pyridyl groups are further modified. Viologens are called so, because these compounds produce violet color on reduction iolet + Latin ''gen'', generator of T ...
, and other redox-active molecules with high reactivity and stable voltage upon charge and discharge. These polymers present an advantage over conjugated polymers due to their localized redox sites and more constant redox potential over charge/discharge.


Carbonyl pendant groups

Carbonyl compounds have been heavily studied, and thus present an advantage, as new active materials with carbonyl pendant groups can be achieved by many different synthetic properties. Polymers with carbonyl groups can form multivalent anions. Stabilization depends on the substituents; vicinal carbonyls are stabilized by enolate formation, aromatic carbonyls are stabilized by delocalization of charge, and quinoidal carbonyls are stabilized by aromaticity.


Organosulfur groups

Sulfur is one of earth's most abundant elements and thus are advantageous for active electrode materials. Small molecule organosulfur active materials exhibit poor stability, which is partially resolved via incorporation into a polymer. In disulfide polymers, electrochemical charge is stored in a thiolate anion, formed by a reversible two-electron oxidation of the disulfide bond. Electrochemical storage in thioethers is achieved by the two-electron oxidation of a neutral thioether to a thioether with a +2 charge. As active materials, however, organosulfur compounds, however, exhibit weak cyclability.


Radical groups

Polymeric electrodes in organic radical batteries are electrochemically active with stable organic radical pendant groups that have an unpaired electron in the uncharged state. Nitroxide radicals are the most commonly applied, though phenoxyl and hydrazyl groups are also often used. A nitroxide radical could be reversibly oxidized and the polymer p-doped, or reduced, causing n-doping. Upon charging, the radical is oxidized to an oxoammonium cation, and at the cathode, the radical is reduced to an aminoxyl anion. These processes are reversed upon discharge, and the radicals are regenerated. For stable charge and discharge, both the radical and doped form of the radical must be chemically stable. These batteries exhibit excellent cyclability and power density, attributed to the stability of the radical and the simple one-electron transfer reaction. Slight decrease in capacity after repeated cycling is likely due to a build up of swollen polymer particles which increase the resistance of the electrode. Because the radical polymers are considerably insulating, conductive additives are often added that which lower the theoretical specific capacity. Nearly all organic radical batteries feature a nearly constant voltage during discharge, which is an advantage over
conductive polymer Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage of conductive polymer ...
batteries. The polymer backbone and
cross-link In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural ...
ing techniques can be tuned to minimize the solubility of the polymer in the electrolyte, thereby minimizing self-discharge.


Control and performance


Performance summary comparison of key polymer electrode types

During discharge, conductive polymers have a sloping voltage that hinders their practical applications. This sloping curve indicates electrochemical instability which could be due to morphology, size, the charge repulsions within the polymer chain during the reaction, or the amorphous state of polymers.


Effect of polymer morphology

Electrochemical performance of polymer electrodes is affected by polymer size, morphology, and degree of crystallinity. In a polypyrrole (PPy)/Sodium ion hybrid battery, a 2018 study demonstrated that the polymer anode with a fluffy structure consisting of chains of submicron particles performed with a much higher capacity (183 mAh g−1) as compared to bulk PPy (34.8 mAh g−1). The structure of the submicron polypyrrole anode allowed for increased electrical contact between the particles, and the electrolyte was able to further penetrate the polymeric active material. It has also been reported that amorphous polymeric active materials performs better than the crystalline counterpart. In 2014, it was demonstrated that crystalline oligopyrene exhibited a discharge capacity of 42.5 mAh g−1, while the amorphous oligopyrene has a higher capacity of 120 mAh g−1. Further, the crystalline version experienced a sloped charge and discharge voltage and considerable overpotential due to slow diffusion of ClO4. The amorphous oligopyrene had a voltage plateau during charge and discharge, as well as significantly less overpotential.


Molecular weight control

The molecular weight of polymers effects their chemical and physical properties, and thus the performance of a polymer electrode. A 2017 study evaluated the effect of molecular weight on electrochemical properties of (PTMA). By increasing the monomer to initiator ratio from 50/1 to 1000/1, five different sizes were achieved from 66 to 704 degrees of polymerization. A strong dependence on molecular weight was established, as the higher the molecular weight polymers exhibited a higher specific discharge capacity and better cyclability. This effect was attributed to a reciprocal relationship between molecular weight and solubility in the electrolyte.


Advantages

Polymer-based batteries have many advantages over metal-based batteries. The electrochemical reactions involved are more simple, and the structural diversity of polymers and method of polymer synthesis allows for increased tunability for desired applications. While new types of inorganic materials are difficult to find, new organic polymers can be much more easily synthesized. Another advantage is that polymer electrode materials may have lower redox potentials, but they have a higher energy density than inorganic materials. And, because the redox reaction kinetics for organics is higher than that for inorganics, they have a higher power density and rate performance. Because of the inherent flexibility and light weight of organic materials as compared to inorganic materials, polymeric electrodes can be printed, cast, and vapor deposited, enabling application in thinner and more flexible devices. Further, most polymers can be synthesized at low cost or extracted from biomass and even recycled, while inorganic metals are limited in availability and can be harmful to the environment. Organic small molecules also possess many of these advantages, however they are more susceptible to dissolving in the electrolyte. Polymeric organic active materials less easily dissolve and thus exhibit superior cyclability.


Challenges

Though superior in this sense to small organic molecules, polymers still exhibit solubility in electrolytes, and battery stability is threatened by dissolved active material that can travel between electrodes, leading to decreased cyclability and self-discharge, which indicates weaker mechanical capacity. This issue can be lessened by incorporating the redox-active unit in the polymeric backbone, but this can decrease the theoretical specific capacity and increase electrochemical polarization. Another challenge is that besides conductive polymers, most polymeric electrodes are electrically insulating and therefore require conductive additives, reducing the battery's overall capacity. While polymers do have a low mass density, they have a greater volumetric energy density which in turn would require an increase in volume of devices being powered.


Safety

A 2009 study evaluated the safety of a hydrophilic radical polymer and found that a radical polymer battery with an aqueous electrolyte is nontoxic, chemically stable, and non-explosive, and is thus a safer alternative to traditional metal-based batteries. Aqueous electrolytes present a safer option over organic electrolytes which can be toxic and can form HF acid. The one-electron redox reaction of a radical polymer electrode during charging generates little heat and therefore has a reduced risk of
thermal runaway Thermal runaway describes a process that is accelerated by increased temperature, in turn releasing energy that further increases temperature. Thermal runaway occurs in situations where an increase in temperature changes the conditions in a way t ...
. Further studies are required to fully understand the safety of all polymeric electrodes.


See also

*
List of battery types This list is a summary of notable electric battery types composed of one or more electrochemical cells. Three lists are provided in the table. The primary (non-rechargeable) and secondary (rechargeable) cell lists are lists of battery chemistry ...


References


External links


"New material claimed to store more energy and cost less money than batteries"
September 29, 2011, National University of Singapore's Nanoscience and Nanotechnology Initiative
"Organic Radical Battery with Piperidinoxyl Polymer"
2002.
"Flexible battery power"
19 March 2007 {{DEFAULTSORT:Battery, polymer Battery types Plastics applications Polymers