HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an ordered semigroup is a
semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', ...
(''S'',•) together with a
partial order In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
≤ that is compatible with the semigroup operation, meaning that ''x'' ≤ ''y'' implies z•x ≤ z•y and x•z ≤ y•z for all ''x'', ''y'', ''z'' in ''S''. An ordered monoid and an
ordered group In abstract algebra, a partially ordered group is a group (''G'', +) equipped with a partial order "≤" that is ''translation-invariant''; in other words, "≤" has the property that, for all ''a'', ''b'', and ''g'' in ''G'', if ''a'' ≤ ''b'' ...
are, respectively, a
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ...
or a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
that are endowed with a partial order that makes them ordered semigroups. The terms ''posemigroup'', ''pogroup'' and ''pomonoid'' are sometimes used, where "po" is an abbreviation for "partially ordered". The
positive integer In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
s, the
nonnegative integer In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
s and the
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s form respectively a posemigroup, a pomonoid, and a pogroup under addition and the natural ordering. Every semigroup can be considered as a posemigroup endowed with the trivial (discrete) partial order "=". A morphism or homomorphism of posemigroups is a
semigroup homomorphism In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively: ''x''·''y'', or simply ''xy'', ...
that ''preserves'' the order (equivalently, that is
monotonically increasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
).


Category-theoretic interpretation

A pomonoid can be considered as a
monoidal category In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and r ...
that is both
skeletal A skeleton is the structural frame that supports the body of an animal. There are several types of skeletons, including the exoskeleton, which is the stable outer shell of an organism, the endoskeleton, which forms the support structure inside ...
and
thin Thin may refer to: * a lean body shape. ''(See also: emaciation, underweight)'' * ''Thin'' (film), a 2006 HBO documentary about eating disorders * Paper Thin (disambiguation), referring to multiple songs * Thin (web server), a Ruby web-server b ...
, with an object of for each element of , a unique morphism from to if and only if , the tensor product being given by , and the unit by .


References

*T.S. Blyth, ''Lattices and Ordered Algebraic Structures'', Springer, 2005, , chap. 11. Ordered algebraic structures Semigroup theory {{Abstract-algebra-stub