In the
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
of
hyperbolic 3-space
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. ...
, the order-4 square tiling honeycomb is one of 11 paracompact regular honeycombs. It is ''paracompact'' because it has infinite
cells and
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
s, with all vertices as
ideal point
In hyperbolic geometry, an ideal point, omega point or point at infinity is a well-defined point outside the hyperbolic plane or space.
Given a line ''l'' and a point ''P'' not on ''l'', right- and left-limiting parallels to ''l'' through ''P'' ...
s at infinity. Given by
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
, it has four
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
s around each edge, and infinite square tilings around each vertex in a
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
.
[Coxeter ''The Beauty of Geometry'', 1999, Chapter 10, Table III]
Symmetry
The order-4 square tiling honeycomb has many reflective symmetry constructions: as a regular honeycomb, ↔ with alternating types (colors) of square tilings, and with 3 types (colors) of square tilings in a ratio of 2:1:1.
Two more half symmetry constructions with pyramidal domains have
+,4">,4,1+,4symmetry: ↔ , and ↔ .
There are two high-index subgroups, both index 8:
*">,4,4*↔
+)">4,4,4,4,1+) with a pyramidal fundamental domain:
(4,∞,4)),((4,∞,4))or ; and
*,4">,4*,4 with 4 orthogonal sets of ultra-parallel mirrors in an octahedral fundamental domain: .
Images
The order-4 square tiling honeycomb is analogous to the 2D hyperbolic
infinite-order apeirogonal tiling
In geometry, the infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of , which means it has countably infinitely many apeirogons around all its ideal vertices.
Symmetry
This tiling represents ...
, , with infinite apeirogonal faces, and with all vertices on the ideal surface.
:
It contains and that tile 2-
hypercycle surfaces, which are similar to these paracompact
order-4 apeirogonal tilings :
:
Related polytopes and honeycombs
The order-4 square tiling honeycomb is a
regular hyperbolic honeycomb in 3-space. It is one of eleven regular paracompact honeycombs.
There are
nine uniform honeycombs in the
,4,4Coxeter group
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean refl ...
family, including this regular form.
It is part of a sequence of honeycombs with a
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
vertex figure:
It is part of a sequence of honeycombs with
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
cells:
It is part of a sequence of quasiregular polychora and honeycombs:
Rectified order-4 square tiling honeycomb
The rectified order-4 hexagonal tiling honeycomb, t
1, has
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
facets, with a
cubic vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
. It is the same as the regular
square tiling honeycomb
In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called ''paracompact'' because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal poin ...
, , .
Truncated order-4 square tiling honeycomb
The truncated order-4 square tiling honeycomb, t
0,1, has
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
and
truncated square tiling
In geometry, the truncated square tiling is a semiregular tiling, semiregular tiling by regular polygons of the Euclidean plane with one square (geometry), square and two octagons on each vertex (geometry), vertex. This is the only edge-to-edge ti ...
facets, with a
square pyramid
In geometry, a square pyramid is a pyramid having a square base. If the apex is perpendicularly above the center of the square, it is a right square pyramid, and has symmetry. If all edge lengths are equal, it is an equilateral square pyramid, ...
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
.
Bitruncated order-4 square tiling honeycomb
The bitruncated order-4 square tiling honeycomb, t
1,2, has
truncated square tiling
In geometry, the truncated square tiling is a semiregular tiling, semiregular tiling by regular polygons of the Euclidean plane with one square (geometry), square and two octagons on each vertex (geometry), vertex. This is the only edge-to-edge ti ...
facets, with a
tetragonal disphenoid
In geometry, a disphenoid () is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same sh ...
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
.
Cantellated order-4 square tiling honeycomb
The cantellated order-4 square tiling honeycomb, is the same thing as the
rectified square tiling honeycomb, . It has
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
and
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
facets, with a
triangular prism
In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A unif ...
vertex figure.
Cantitruncated order-4 square tiling honeycomb
The cantitruncated order-4 square tiling honeycomb, is the same as the
truncated square tiling honeycomb, . It contains
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
and
truncated square tiling
In geometry, the truncated square tiling is a semiregular tiling, semiregular tiling by regular polygons of the Euclidean plane with one square (geometry), square and two octagons on each vertex (geometry), vertex. This is the only edge-to-edge ti ...
facets, with a
mirrored sphenoid
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
vertex figure.
It is the same as the
truncated square tiling honeycomb, .
Runcinated order-4 square tiling honeycomb
The runcinated order-4 square tiling honeycomb, t
0,3, has
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
and
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
facets, with a
square antiprism
In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an ''anticube''.
If all its faces are regular, it is a sem ...
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
.
Runcitruncated order-4 square tiling honeycomb
The runcitruncated order-4 square tiling honeycomb, t
0,1,3, has
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
,
truncated square tiling
In geometry, the truncated square tiling is a semiregular tiling, semiregular tiling by regular polygons of the Euclidean plane with one square (geometry), square and two octagons on each vertex (geometry), vertex. This is the only edge-to-edge ti ...
,
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
, and
octagonal prism
In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps.
If faces are all regular, it is a semiregular polyhedron.
Symmetry
Images
The octagonal prism can also b ...
facets, with a
square pyramid
In geometry, a square pyramid is a pyramid having a square base. If the apex is perpendicularly above the center of the square, it is a right square pyramid, and has symmetry. If all edge lengths are equal, it is an equilateral square pyramid, ...
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
.
The runcicantellated order-4 square tiling honeycomb is equivalent to the runcitruncated order-4 square tiling honeycomb.
Omnitruncated order-4 square tiling honeycomb
The omnitruncated order-4 square tiling honeycomb, t
0,1,2,3, has
truncated square tiling
In geometry, the truncated square tiling is a semiregular tiling, semiregular tiling by regular polygons of the Euclidean plane with one square (geometry), square and two octagons on each vertex (geometry), vertex. This is the only edge-to-edge ti ...
and
octagonal prism
In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by rectangular sides and two regular octagon caps.
If faces are all regular, it is a semiregular polyhedron.
Symmetry
Images
The octagonal prism can also b ...
facets, with a
digonal disphenoid vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
.
Alternated order-4 square tiling honeycomb
The alternated order-4 square tiling honeycomb is a lower-symmetry construction of the order-4 square tiling honeycomb itself.
Cantic order-4 square tiling honeycomb
The cantic order-4 square tiling honeycomb is a lower-symmetry construction of the
truncated order-4 square tiling honeycomb.
Runcic order-4 square tiling honeycomb
The runcic order-4 square tiling honeycomb is a lower-symmetry construction of the
order-3 square tiling honeycomb.
Runcicantic order-4 square tiling honeycomb
The runcicantic order-4 square tiling honeycomb is a lower-symmetry construction of the
bitruncated order-4 square tiling honeycomb.
Quarter order-4 square tiling honeycomb
The quarter order-4 square tiling honeycomb, q, , or , has
truncated square tiling
In geometry, the truncated square tiling is a semiregular tiling, semiregular tiling by regular polygons of the Euclidean plane with one square (geometry), square and two octagons on each vertex (geometry), vertex. This is the only edge-to-edge ti ...
and
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of th ...
facets, with a
square antiprism
In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an ''anticube''.
If all its faces are regular, it is a sem ...
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
.
See also
*
Convex uniform honeycombs in hyperbolic space
In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wyt ...
*
Regular tessellations of hyperbolic 3-space
*
Paracompact uniform honeycomb
In geometry, uniform honeycombs in hyperbolic space are tessellations of convex uniform polyhedron Cell (geometry), cells. In 3-dimensional hyperbolic space there are 23 Coxeter group families of Coxeter diagram#Paracompact (Koszul simplex groups), ...
s
References
*
Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
, ''
Regular Polytopes
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
'', 3rd. ed., Dover Publications, 1973. . (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
* ''The Beauty of Geometry: Twelve Essays'' (1999), Dover Publications, , (Chapter 10
Regular Honeycombs in Hyperbolic Space Table III
*
Jeffrey R. Weeks ''The Shape of Space, 2nd edition'' {{isbn, 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I,II)
*
Norman Johnson ''Uniform Polytopes'', Manuscript
**
N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
** N.W. Johnson: ''Geometries and Transformations'', (2018) Chapter 13: Hyperbolic Coxeter groups
** Norman W. Johnson and Asia Ivic Weis
Quadratic Integers and Coxeter GroupsPDF
Portable Document Format (PDF), standardized as ISO 32000, is a file format developed by Adobe in 1992 to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems. ...
Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336
Honeycombs (geometry)
Self-dual tilings
Square tilings