HOME

TheInfoList



OR:

An optical cavity, resonating cavity or optical resonator is an arrangement of
mirror A mirror or looking glass is an object that Reflection (physics), reflects an image. Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the ...
s or other optical elements that forms a
cavity resonator A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator ...
for light waves. Optical cavities are a major component of
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
s, surrounding the
gain medium The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a h ...
and providing feedback of the laser light. They are also used in
optical parametric oscillator An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave (called "pump") with frequency \omega_p into two output waves of lower frequency (\omega_s, \omega_i) by mean ...
s and some interferometers. Light confined in the cavity reflects multiple times, producing
modes Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
with certain resonance frequencies. Modes can be decomposed into
longitudinal mode A longitudinal mode of a resonant cavity is a particular standing wave pattern formed by waves confined in the cavity. The longitudinal modes correspond to the wavelengths of the wave which are reinforced by constructive interference after man ...
s that differ only in frequency and
transverse mode A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwav ...
s that have different intensity patterns across the cross-section of the beam. Many types of optical cavity produce standing wave modes. Different resonator types are distinguished by the focal lengths of the two mirrors and the distance between them. Flat mirrors are not often used because of the difficulty of aligning them to the needed precision. The geometry (resonator type) must be chosen so that the beam remains stable, i.e. the size of the beam does not continually grow with multiple reflections. Resonator types are also designed to meet other criteria such as minimum beam waist or having no focal point (and therefore intense light at that point) inside the cavity. Optical cavities are designed to have a large Q factor; a beam will reflect a very large number of times with little
attenuation In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variabl ...
. Therefore, the frequency
line width A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency range, ...
of the beam is very small indeed compared to the frequency of the laser.


Resonator modes

Light confined in a resonator will reflect multiple times from the mirrors, and due to the effects of
interference Interference is the act of interfering, invading, or poaching. Interference may also refer to: Communications * Interference (communication), anything which alters, modifies, or disrupts a message * Adjacent-channel interference, caused by extr ...
, only certain patterns and frequencies of radiation will be sustained by the resonator, with the others being suppressed by destructive interference. In general, radiation patterns which are reproduced on every round-trip of the light through the resonator are the most stable, and these are the eigenmodes, known as the ''modes'', of the resonator. Resonator modes can be divided into two types:
longitudinal mode A longitudinal mode of a resonant cavity is a particular standing wave pattern formed by waves confined in the cavity. The longitudinal modes correspond to the wavelengths of the wave which are reinforced by constructive interference after man ...
s, which differ in frequency from each other; and
transverse mode A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwav ...
s, which may differ in both frequency and the intensity pattern of the light. The basic, or fundamental transverse mode of a resonator is a
Gaussian beam In optics, a Gaussian beam is a beam of electromagnetic radiation with high monochromaticity whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. Thi ...
.


Resonator types

The most common types of optical cavities consist of two facing plane (flat) or spherical mirrors. The simplest of these is the plane-parallel or Fabry–Pérot cavity, consisting of two opposing flat mirrors. While simple, this arrangement is rarely used in large-scale lasers due to the difficulty of alignment; the mirrors must be aligned parallel within a few seconds of arc, or "walkoff" of the intracavity beam will result in it spilling out of the sides of the cavity. However, this problem is much reduced for very short cavities with a small mirror separation distance (''L'' < 1 cm). Plane-parallel resonators are therefore commonly used in microchip and microcavity lasers and
semiconductor laser The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with e ...
s. In these cases, rather than using separate mirrors, a reflective optical coating may be directly applied to the laser medium itself. The plane-parallel resonator is also the basis of the Fabry–Pérot interferometer. For a resonator with two mirrors with radii of curvature ''R''1 and ''R''2, there are a number of common cavity configurations. If the two radii are equal to half the cavity length (''R''1 = ''R''2 = ''L'' / 2), a concentric or spherical resonator results. This type of cavity produces a
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
-limited beam waist in the centre of the cavity, with large beam diameters at the mirrors, filling the whole mirror aperture. Similar to this is the hemispherical cavity, with one plane mirror and one mirror of radius equal to the cavity length. A common and important design is the confocal resonator, with mirrors of equal radii to the cavity length (''R''1 = ''R''2 = ''L''). This design produces the smallest possible beam diameter at the cavity mirrors for a given cavity length, and is often used in lasers where the purity of the transverse mode pattern is important. A concave-convex cavity has one convex mirror with a negative radius of curvature. This design produces no intracavity focus of the beam, and is thus useful in very high-power lasers where the intensity of the intracavity light might be damaging to the intracavity medium if brought to a focus.


Spherical cavity

A transparent dielectric sphere, such as a liquid droplet, also forms an interesting optical cavity. In 1986
Richard K. Chang Richard is a male given name. It originates, via Old French, from Frankish language, Old Frankish and is a Compound (linguistics), compound of the words descending from Proto-Germanic language, Proto-Germanic ''*rīk-'' 'ruler, leader, king' an ...
et al. demonstrated
lasing A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The firs ...
using
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an Alcohol (chemistry), alcohol with the chemical formula . Its formula can be also written as or (an ethyl ...
microdroplets (20–40 micrometers in radius) doped with
rhodamine 6G Rhodamine 6G is a highly fluorescent rhodamine family dye. It is often used as a tracer dye within water to determine the rate and direction of flow and transport. Rhodamine dyes fluoresce and can thus be detected easily and inexpensively with ...
dye. This type of optical cavity exhibits
optical resonances Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
when the size of the sphere or the optical
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
or the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
is varied. The resonance is known as
morphology-dependent resonance Resonances found in certain types of optical cavity that are cylindrical, spherical, and ellipsoidal in shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to o ...
.


Stability

Only certain ranges of values for ''R''1, ''R''2, and ''L'' produce stable resonators in which periodic refocussing of the intracavity beam is produced. If the cavity is unstable, the beam size will grow without limit, eventually growing larger than the size of the cavity mirrors and being lost. By using methods such as
ray transfer matrix analysis Ray transfer matrix analysis (also known as ABCD matrix analysis) is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element (surface, in ...
, it is possible to calculate a stability criterion: : 0 \leqslant \left( 1 - \frac \right) \left( 1 - \frac \right) \leqslant 1. Values which satisfy the inequality correspond to stable resonators. The stability can be shown graphically by defining a stability parameter, ''g'' for each mirror: : g_1 = 1 - \frac ,\qquad g_2 = 1 - \frac, and plotting ''g''1 against ''g''2 as shown. Areas bounded by the line ''g''1 ''g''2 = 1 and the axes are stable. Cavities at points exactly on the line are marginally stable; small variations in cavity length can cause the resonator to become unstable, and so lasers using these cavities are in practice often operated just inside the stability line. A simple geometric statement describes the regions of stability: A cavity is stable if the line segments between the mirrors and their centers of curvature overlap, but one does not lie entirely within the other. In the confocal cavity, if a ray is deviated from its original direction in the middle of the cavity, its displacement after reflecting from one of the mirrors is larger than in any other cavity design. This prevents
amplified spontaneous emission Amplified spontaneous emission (ASE) or superluminescence is light, produced by spontaneous emission, that has been optically amplified by the process of stimulated emission in a gain medium. It is inherent in the field of random lasers. Origins ...
and is important for designing high power amplifiers with good beam quality.


Practical resonators

If the optical cavity is not empty (e.g., a laser cavity which contains the gain medium), the value of ''L'' used is not the physical mirror separation, but the optical path length between the mirrors. Optical elements such as lenses placed in the cavity alter the stability and mode size. In addition, for most gain media, thermal and other inhomogeneities create a variable lensing effect in the medium, which must be considered in the design of the laser resonator. Practical laser resonators may contain more than two mirrors; three- and four-mirror arrangements are common, producing a "folded cavity". Commonly, a pair of curved mirrors form one or more confocal sections, with the rest of the cavity being quasi-
collimated A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffraction p ...
and using plane mirrors. The shape of the laser beam depends on the type of resonator: The beam produced by stable, paraxial resonators can be well modeled by a
Gaussian beam In optics, a Gaussian beam is a beam of electromagnetic radiation with high monochromaticity whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. Thi ...
. In special cases the beam can be described as a single transverse mode and the spatial properties can be well described by the Gaussian beam, itself. More generally, this beam may be described as a superposition of transverse modes. Accurate description of such a beam involves expansion over some complete, orthogonal set of functions (over two-dimensions) such as Hermite polynomials or the
Ince polynomials In mathematics, the Ince equation, named for Edward Lindsay Ince, is the differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the func ...
. Unstable laser resonators on the other hand, have been shown to produce fractal shaped beams. Some intracavity elements are usually placed at a beam waist between folded sections. Examples include
acousto-optic modulator An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers ...
s for
cavity dumping Cavity may refer to: Biology and healthcare *Body cavity, a fluid-filled space in many animals where organs typically develop **Gastrovascular cavity, the primary organ of digestion and circulation in cnidarians and flatworms * Dental cavity or to ...
and
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
spatial filter A spatial filter is an optical device which uses the principles of Fourier optics to alter the structure of a beam of light or other electromagnetic radiation, typically coherent laser light. Spatial filtering is commonly used to "clean up" the o ...
s for
transverse mode A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwav ...
control. For some low power lasers, the laser gain medium itself may be positioned at a beam waist. Other elements, such as
filter Filter, filtering or filters may refer to: Science and technology Computing * Filter (higher-order function), in functional programming * Filter (software), a computer program to process a data stream * Filter (video), a software component tha ...
s, prisms and
diffraction grating In optics, a diffraction grating is an optical component with a periodic structure that diffracts light into several beams travelling in different directions (i.e., different diffraction angles). The emerging coloration is a form of structura ...
s often need large quasi-collimated beams. These designs allow compensation of the cavity beam's
astigmatism Astigmatism is a type of refractive error due to rotational asymmetry in the eye's refractive power. This results in distorted or blurred vision at any distance. Other symptoms can include eyestrain, headaches, and trouble driving at n ...
, which is produced by Brewster-cut elements in the cavity. A 'Z'-shaped arrangement of the cavity also compensates for
coma A coma is a deep state of prolonged unconsciousness in which a person cannot be awakened, fails to respond normally to painful stimuli, light, or sound, lacks a normal wake-sleep cycle and does not initiate voluntary actions. Coma patients exhi ...
while the 'delta' or 'X'-shaped cavity does not. Out of plane resonators lead to rotation of the beam profile and more stability. The heat generated in the gain medium leads to frequency drift of the cavity, therefore the frequency can be actively stabilized by locking it to unpowered cavity. Similarly the pointing stability of a laser may still be improved by spatial filtering by an optical fibre.


Alignment

Precise alignment is important when assembling an optical cavity. For best output power and beam quality, optical elements must be aligned such that the path followed by the beam is centered through each element. Simple cavities are often aligned with an alignment laser—a well-collimated visible laser that can be directed along the axis of the cavity. Observation of the path of the beam and its reflections from various optical elements allows the elements' positions and tilts to be adjusted. More complex cavities may be aligned using devices such as electronic
autocollimator An autocollimator is an optical instrument for non-contact measurement of angles. They are typically used to align components and measure deflections in optical or mechanical systems. An autocollimator works by projecting an image onto a target mir ...
s and
laser beam profiler A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers — ultraviolet, visible, infrared, contin ...
s.


Optical delay lines

Optical cavities can also be used as multipass optical delay lines, folding a light beam so that a long path-length may be achieved in a small space. A plane-parallel cavity with flat mirrors produces a flat zigzag light path, but as discussed above, these designs are very sensitive to mechanical disturbances and walk-off. When curved mirrors are used in a nearly confocal configuration, the beam travels on a circular zigzag path. The latter is called a Herriott-type delay line. A fixed insertion mirror is placed off-axis near one of the curved mirrors, and a mobile pickup mirror is similarly placed near the other curved mirror. A flat linear stage with one pickup mirror is used in case of flat mirrors and a rotational stage with two mirrors is used for the Herriott-type delay line. The rotation of the beam inside the cavity alters the polarization state of the beam. To compensate for this, a single pass delay line is also needed, made of either a three or two mirrors in a 3d respective 2d retro-reflection configuration on top of a linear stage. To adjust for beam divergence a second car on the linear stage with two lenses can be used. The two lenses act as a telescope producing a flat phase front of a
Gaussian beam In optics, a Gaussian beam is a beam of electromagnetic radiation with high monochromaticity whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. Thi ...
on a virtual end mirror.


See also

*
Optical feedback Video feedback is the process that starts and continues when a video camera is pointed at its own playback video monitor. The loop delay from camera to display back to camera is at least one video frame time, due to the input and output scannin ...
*
Multiple-prism grating laser oscillator Multiple-prism grating laser oscillators,F. J. Duarte, Narrow-linewidth pulsed dye laser oscillators, in ''Dye Laser Principles'' (Academic, New York, 1990) Chapter 4. or MPG laser oscillators, use multiple-prism beam expansion to illuminate a diff ...
(or Multiple-prism grating laser cavity) *
Coupled mode theory Coupled mode theory (CMT) is a perturbational approach for analyzing the coupling of vibrational systems (mechanical, optical, electrical, etc.) in space or in time. Coupled mode theory allows a wide range of devices and systems to be modeled as on ...
*
Vertical-cavity surface-emitting laser The vertical-cavity surface-emitting laser, or VCSEL , is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers (also ''in-plane'' lasers) which ...


References


Further reading

*Koechner, William. ''Solid-state laser engineering'', 2nd ed.
Springer Verlag Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in ...
(1988). *An excellent two-part review of the history of optical cavities: ** ** {{Lasers Cavity, optical Laser science