Nondegenerate Bilinear Form
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear i ...
such that the map from ''V'' to ''V'' (the
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by const ...
of ''V'' ) given by is not an isomorphism. An equivalent definition when ''V'' is
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to disti ...
is that it has a non-trivial kernel: there exist some non-zero ''x'' in ''V'' such that :f(x,y)=0\, for all \,y \in V.


Nondegenerate forms

A nondegenerate or nonsingular form is a
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear i ...
that is not degenerate, meaning that v \mapsto (x \mapsto f(x,v)) is an isomorphism, or equivalently in finite dimensions, if and only if :f(x,y)=0 for all y \in V implies that x = 0. The most important examples of nondegenerate forms are inner products and symplectic forms. Symmetric nondegenerate forms are important generalizations of inner products, in that often all that is required is that the map V \to V^* be an isomorphism, not positivity. For example, a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
with an inner product structure on its tangent spaces is a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
, while relaxing this to a symmetric nondegenerate form yields a pseudo-Riemannian manifold.


Using the determinant

If ''V'' is finite-dimensional then, relative to some basis for ''V'', a bilinear form is degenerate if and only if the determinant of the associated
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
is zero – if and only if the matrix is ''
singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular homology * SINGULAR, an open source Computer Algebra System (CAS) * Singular or sounder, a group of boar, ...
'', and accordingly degenerate forms are also called singular forms. Likewise, a nondegenerate form is one for which the associated matrix is non-singular, and accordingly nondegenerate forms are also referred to as non-singular forms. These statements are independent of the chosen basis.


Related notions

If for a
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a ...
''Q'' there is a non-zero vector ''v'' ∈ ''V'' such that ''Q''(''v'') = 0, then ''Q'' is an
isotropic quadratic form In mathematics, a quadratic form over a field ''F'' is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More precisely, if ''q'' is a quadratic form on a vector sp ...
. If ''Q'' has the same sign for all non-zero vectors, it is a definite quadratic form or an anisotropic quadratic form. There is the closely related notion of a unimodular form and a perfect pairing; these agree over fields but not over general rings.


Examples

The most important examples of nondegenerate forms are inner products and symplectic forms. Symmetric nondegenerate forms are important generalizations of inner products, in that often all that is required is that the map V \to V^* be an isomorphism, not positivity. For example, a manifold with an inner product structure on its tangent spaces is a Riemannian manifold, while relaxing this to a symmetric nondegenerate form yields a pseudo-Riemannian manifold.


Infinite dimensions

Note that in an infinite-dimensional space, we can have a bilinear form ƒ for which v \mapsto (x \mapsto f(x,v)) is
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
but not
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
. For example, on the space of
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s on a closed bounded interval, the form : f(\phi,\psi) = \int\psi(x)\phi(x) \,dx is not surjective: for instance, the
Dirac delta functional In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution (mathematics), distribution over the real numbers, whose value is zero everywhere except at zero, and who ...
is in the dual space but not of the required form. On the other hand, this bilinear form satisfies :f(\phi,\psi)=0 for all \phi implies that \psi=0.\, In such a case where ƒ satisfies injectivity (but not necessarily surjectivity), ƒ is said to be ''weakly nondegenerate''.


Terminology

If ''f'' vanishes identically on all vectors it is said to be totally degenerate. Given any bilinear form ''f'' on ''V'' the set of vectors :\ forms a totally degenerate subspace of ''V''. The map ''f'' is nondegenerate if and only if this subspace is trivial. Geometrically, an isotropic line of the quadratic form corresponds to a point of the associated
quadric hypersurface In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections ( ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension ''D'') in a -dimensional space, and it is d ...
in
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
. Such a line is additionally isotropic for the bilinear form if and only if the corresponding point is a singularity. Hence, over an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
, Hilbert's Nullstellensatz guarantees that the quadratic form always has isotropic lines, while the bilinear form has them if and only if the surface is singular.


See also

* *


Citations

{{Topological vector spaces Bilinear forms Functional analysis pl:Forma dwuliniowa#Własności