Nitrogen-vacancy Center
   HOME

TheInfoList



OR:

The nitrogen-vacancy center (N-V center or NV center) is one of numerous
point defects Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Poin ...
in
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the Chemical stability, chemically stable form of car ...
. Its most explored and useful property is its
photoluminescence Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. photon ...
, which allows observers to read out its spin-state. The NV center's electron spin, localized at atomic scales, can be manipulated at room temperature by external factors such as
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
, or
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
s,
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
radiation, or light, resulting in sharp resonances in the intensity of the photoluminescence. These resonances can be explained in terms of
electron spin In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin (physics), spin and electric charge. The value of the ...
related phenomena such as
quantum entanglement Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of ...
,
spin–orbit interaction In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbi ...
and
Rabi oscillations In physics, the Rabi cycle (or Rabi flop) is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, ...
, and analysed using advanced
quantum optics Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have b ...
theory. An individual NV center can be used as a basic unit for a
quantum computer Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
, a
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
, and used for
quantum cryptography Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution ...
. Further potential applications in novel fields of electronics and sensing include
spintronics Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-sta ...
,
maser A maser (, an acronym for microwave amplification by stimulated emission of radiation) is a device that produces coherent electromagnetic waves through amplification by stimulated emission. The first maser was built by Charles H. Townes, Ja ...
s, and
quantum sensor A quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensin ...
s. If the charge is not specified the term "NV center" refers to the negatively charged NV center.


Structure

The nitrogen-vacancy center is a
point defect A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell param ...
in the
diamond lattice The diamond cubic crystal structure is a repeating pattern of 8 atoms that certain materials may adopt as they solidify. While the first known example was diamond, other elements in group 14 also adopt this structure, including α-tin, the sem ...
. It consists of a nearest-neighbor pair of a nitrogen atom, which substitutes for a carbon atom, and a lattice vacancy. Two charge states of this defect, neutral NV0 and negative NV, are known from
spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wav ...
studies using
optical absorption In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy — and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). ...
,
photoluminescence Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. photon ...
(PL),
electron paramagnetic resonance Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spin ...
(EPR) and
optically detected magnetic resonance In physics, optically detected magnetic resonance (ODMR) is a double resonance technique by which the electron spin state of a crystal defect may be optically pumped for spin initialisation and readout. Like electron paramagnetic resonance (EPR), O ...
(ODMR), which can be viewed as a hybrid of PL and EPR; most details of the structure originate from EPR. The nitrogen atom on one hand has five valence electrons. Three of them are
covalently A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
bonded to the carbon atoms, while the other two remain non-bonded and are called a
lone pair In chemistry, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bondIUPAC ''Gold Book'' definition''lone (electron) pair''/ref> and is sometimes called an unshared pair or non-bonding pair. Lone ...
. The vacancy on the other hand has three unpaired electrons. Two of them form a quasi covalent bond and one remains unpaired. The overall symmetry, however, is axial (trigonal C3V); one can visualize this by imagining the three unpaired vacancy electrons continuously exchanging their roles. The NV0 thus has one unpaired electron and is paramagnetic. However, despite extensive efforts,
electron paramagnetic resonance Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spin ...
signals from NV0 avoided detection for decades until 2008. Optical excitation is required to bring the NV0 defect into the EPR-detectable excited state; the signals from the ground state are presumably too broad for EPR detection. The NV0 centers can be converted into NV by changing the
Fermi level The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''µ'' or ''E''F for brevity. The Fermi level does not include the work required to remove ...
position. This can be achieved by applying external voltage to a p-n junction made from doped diamond, e.g., in a
Schottky diode The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage ...
. In the negative charge state NV, an extra electron is located at the vacancy site forming a spin S=1 pair with one of the vacancy electrons. As in NV0, the vacancy electrons are "exchanging roles" preserving the overall trigonal symmetry. This NV state is what is commonly, and somewhat incorrectly, called "the nitrogen-vacancy center". The neutral state is not generally used for quantum technology. The NV centers are randomly oriented within a diamond crystal.
Ion implantation Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fab ...
techniques can enable their artificial creation in predetermined positions.


Production

Nitrogen-vacancy centers are typically produced from single substitutional nitrogen centers (called C or P1 centers in diamond literature) by irradiation followed by annealing at temperatures above 700 °C. A wide range of high-energy particles is suitable for such irradiation, including electrons, protons, neutrons, ions, and gamma photons. Irradiation produces lattice vacancies, which are a part of NV centers. Those vacancies are immobile at room temperature, and annealing is required to move them. Single substitutional nitrogen produces strain in the diamond lattice; it therefore efficiently captures moving vacancies, producing the NV centers. During
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substra ...
of diamond, a small fraction of single substitutional nitrogen impurity (typically <0.5%) traps vacancies generated as a result of the plasma synthesis. Such nitrogen-vacancy centers are preferentially aligned to the growth direction. Diamond is notorious for having a relatively large lattice strain. Strain splits and shifts optical transitions from individual centers resulting in broad lines in the ensembles of centers. Special care is taken to produce extremely sharp NV lines (line width ~10 MHz) required for most experiments: high-quality, pure natural or better synthetic diamonds (type IIa) are selected. Many of them already have sufficient concentrations of grown-in NV centers and are suitable for applications. If not, they are irradiated by high-energy particles and annealed. Selection of a certain irradiation dose allows tuning the concentration of produced NV centers such that individual NV centers are separated by micrometre-large distances. Then, individual NV centers can be studied with standard
optical microscope The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microsco ...
s or, better,
near-field scanning optical microscope Near-field scanning optical microscopy (NSOM) or scanning near-field optical microscopy (SNOM) is a microscopy technique for nanostructure investigation that breaks the far field resolution limit by exploiting the properties of evanescent waves ...
s having sub-micrometre resolution.


Energy level structure

The NV center has a ground-state triplet (3A), an excited-state triplet (3E) and two intermediate-state singlets (1A and 1E).Group theory results are used to take into account the symmetry of the diamond crystal, and so the symmetry of the NV itself. Followingly, the energy levels are labeled according to group theory, and in particular are labelled after the
irreducible representations In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _W,W ...
of the C3V
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient ...
of the defect center, A1, A2, and E. The "3" in 3A2 and 3E as well as the "1" in 1A1 and 1E represent the number of allowable ''m''s spin states, or the spin multiplicity, which range from –''S'' to ''S'' for a total of 2''S''+1 possible states. If ''S'' = 1, ''m''s can be −1, 0, or 1.
Both 3A and 3E contain ms = ±1 spin states, in which the two electron spins are aligned (either up, such that ms = +1 or down, such that ms = -1), and an ms = 0 spin state where the electron spins are antiparallel. Due to the magnetic interaction, the energy of the ms = ±1 states is higher than that of the ms = 0 state. 1A and 1E only contain a spin state singlet each with ms = 0. If an external magnetic field is applied along the defect axis (the axis which aligns with the nitrogen atom and the vacancy) of the NV center, it does not affect the ms = 0 states, but it splits the ''m''s = ±1 levels (
Zeeman effect The Zeeman effect (; ) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize ...
). Similarly the following other properties of the environment influence the energy level diagram : # Amplitude and orientation of a static
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
splits the ''m''s = ±1 levels in the ground and excited states. # Amplitude and orientation of
elastic Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects togeth ...
(strain) or
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
s have a much smaller but also more complex effects on the different levels. # Continuous-wave
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
radiation (applied in resonance with the transition between ms = 0 and (one of the) ''m''s = ±1 states) changes the population of the sublevels within the ground and excited state. # A tunable laser can selectively excite certain sublevels of the ground and excited states. # Surrounding spins and spin–orbit interaction will modulate the magnetic field experienced by the NV center. # Temperature and pressure affect different parts of the spectrum including the shift between ground and excited states. The above-described energy structureThe energy level structure of the NV center was established by combining optically detected magnetic resonance (ODMR), electron paramagnetic resonance (EPR) and theoretical results, as shown in the figure. In particular, several theoretical works have been done, using the Linear Combination of Atomic Orbitals (LCAO) approach, to build the electronic orbitals to describe the possible quantum states, looking at the NV center as a molecule. is by no means exceptional for a defect in diamond or other semiconductor. It was not this structure alone, but a combination of several favorable factors (previous knowledge, easy production, biocompatibility, simple initialisation, use at room temperature etc.) which suggested the use of the NV center as a
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
and
quantum sensor A quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensin ...
.


Optical properties

NV centers emit bright red light (3E→3A transitions), if excited off-resonantly by visible green light (3A →3E transitions). This can be done with convenient light sources such as argon or krypton lasers, frequency doubled Nd:YAG lasers,
dye laser A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 na ...
s, or He-Ne lasers. Excitation can also be achieved at energies below that of zero phonon emission. As the relaxation time from the excited state is small (~10 ns), the emission happens almost instantly after the excitation. At room temperature the NV center's optical spectrum exhibits no sharp peaks due to thermal broadening. However, cooling the NV centers with
liquid nitrogen Liquid nitrogen—LN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, low viscosity liquid that is wide ...
or
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
dramatically narrows the lines down to a width of a few MHz. At low temperature it also becomes possible to specifically address the zero-phonon line (ZPL). An important property of the luminescence from individual NV centers is its high temporal stability. Whereas many single-molecular emitters bleach (i.e. change their charge state and become dark) after emission of 106–108 photons, bleaching is unlikely for NV centers at room temperature. Strong laser illumination, however, may also convert some NV into NV0 centers. Because of these properties, the ideal technique to address the NV centers is
confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a sp ...
, both at room temperature and at low temperature.


State manipulation


Optical spin manipulation

Optical transitions must preserve the total spin and occur only between levels of the same total spin. Specifically, transitions between the ground and excited states (with equal spin) can be induced using a green laser with a wavelength of 546 nm. Transitions 3E→1A and 1E→3A are non-radiative, while 1A →1E has both a non-radiative and infrared decay path. The diagram on the right shows the multi-electronic states of the NV center labeled according to their symmetry (E or A) and their spin state (3 for a triplet (S=1) and 1 for a singlet (S=0)). There are two triplet states and two intermediate singlet states.


Spin-state initialisation

An important property of the non-radiative transition between 3E and 1A is that it is stronger for ms = ±1 and weaker for ms = 0. This provides the basis a very useful manipulation strategy, which is called spin state initialisation (or optical spin-polarization). To understand the process, first consider an off-resonance excitation which has a higher frequency (typically 2.32 eV (532 nm)) than the frequencies of all transitions and thus lies in the
vibronic Vibronic coupling (also called nonadiabatic coupling or derivative coupling) in a molecule involves the interaction between electronic and nuclear vibrational motion. The term "vibronic" originates from the combination of the terms "vibrational" a ...
bands for all transitions. By using a pulse of this wavelength, one can excite all spin states from 3A to 3E. An NV center in the ground state with ms = 0 will be excited to the corresponding excited state with ms = 0 due to the conservation of spin. Afterwards it decays back to its original state. For a ground state with ms = ±1, the situation is different. After the excitation, it has a relatively high probability to decay into the intermediate state 1A by non-radiative transitionThis is a phenomenon called intersystem crossing (ISC). It happens at an appreciable rate because the energy curve in function of the position of the atoms for the excited ms = ±1 state intersects the curve for the 1A state. Therefore, for some instant during the vibrational relaxation that the ions undergo after the excitement, it is possible for the spin to flip with little or no energy required in the transition. and further into the ground state with ms = 0. After many cycles, the state of the NV center (independently of whether it started in ms = 0 or ms = ±1) will end up in the ms = 0 ground state. This process can be used to initialize the quantum state of a
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
for
quantum information processing Quantum information science is an interdisciplinary field that seeks to understand the analysis, processing, and transmission of information using quantum mechanics principles. It combines the study of Information science with quantum effects in p ...
or quantum sensing. Sometimes the polarisability of the NV center is explained by the claim that the transition from 1E to the ground state with ms = ±1 is small, compared to the transition to ms = 0. However, it has been shown that the comparatively low decay probability for ms = 0 states w.r.t. ms = ±1 states into 1A is enough to explain the polarization.


Effects of external fields


Microwave spin manipulation

The energy difference between the ''m''s = 0 and ''m''s = ±1 states corresponds to the
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
regime. Population can be transferred between the states by applying a resonant magnetic field perpendicular to the defect axis. Numerous dynamic effects (
spin echo In magnetic resonance, a spin echo or Hahn echo is the refocusing of spin magnetisation by a pulse of resonant electromagnetic radiation. Modern nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) make use of this effect. The NMR ...
,
Rabi oscillations In physics, the Rabi cycle (or Rabi flop) is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, ...
, etc.) can be exploited by applying a carefully designed sequence of microwave pulses. Such protocols are rather important for the practical realization of
quantum computer Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
s. By manipulating the population, it is possible to out the NV center into a more sensitive or stable state. Its own resulting fluctuating fields may also be used to influence the surrounding nuclei or protect the NV center itself from noise. This is typically done using a wire loop (microwave antenna) which creates an oscillating magnetic field.


Influence of external factors

If a magnetic field is oriented along the defect axis it leads to
Zeeman splitting The Zeeman effect (; ) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize ...
separating the ms = +1 from the ms = -1 states. This technique is used to lift the degeneracy and use only two of the spin states (usually the ground states with ms = -1 and ms = 0) as a
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
. Population can then be transferred between them using a microwave field. In the specific instance that the magnetic field reaches 1027 G (or 508 G) then the ''m''s = –1 and ''m''s = 0 states in the ground (or excited) state become equal in energy (Ground/Excited State Level Anticrossing). The following strong interaction results in so-called
spin polarization Spin polarization is the degree to which the spin, i.e., the intrinsic angular momentum of elementary particles, is aligned with a given direction. This property may pertain to the spin, hence to the magnetic moment, of conduction electrons in fe ...
, which strongly affects the intensity of optical absorption and luminescence transitions involving those states. Importantly, this splitting can be modulated by applying an external
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
, in a similar fashion to the magnetic field mechanism outlined above, though the physics of the splitting is somewhat more complex. Nevertheless, an important practical outcome is that the intensity and position of the luminescence lines is modulated. Strain has a similar effect on the NV center as electric fields. There is an additional splitting of the ''m''s = ±1 energy levels, which originates from the
hyperfine In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nuc ...
interaction between surrounding nuclear spins and the NV center. These nuclear spins create magnetic and electric fields of their own leading to further distortions of the NV spectrum (see nuclear Zeeman and quadrupole interaction). Also the NV center's own
spin–orbit interaction In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbi ...
and orbital degeneracy leads to additional level splitting in the excited 3E state. Temperature and pressure directly influence the zero-field term of the NV center leading to a shift between the ground and excited state levels. The
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
, a quantum mechanical equation describing the dynamics of a system, which shows the influence of different factors on the NV center can be found below. Although it can be challenging, all of these effects are measurable, making the NV center a perfect candidate for a
quantum sensor A quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensin ...
.


Charge state manipulation

It is also possible to switch the charge state of the NV center (i.e. between NV, NV+ and NV0) by applying a gate voltage.


Potential applications

The spectral shape and intensity of the optical signals from the NV centers are sensitive to external perturbation, such as temperature, strain, electric and magnetic field. However, the use of spectral shape for sensing those perturbation is impractical, as the diamond would have to be cooled to cryogenic temperatures to sharpen the NV signals. A more realistic approach is to use luminescence intensity (rather than lineshape), which exhibits a sharp resonance when a microwave frequency is applied to diamond that matches the splitting of the ground-state levels. The resulting optically detected magnetic resonance signals are sharp even at room temperature, and can be used in miniature sensors. Such sensors can detect magnetic fields of a few nanotesla or electric fields of about 10 V/cm at kilohertz frequencies after 100 seconds of averaging. This sensitivity allows detecting a magnetic or electric field produced by a single electron located tens of nanometers away from an NV center. Using the same mechanism, the NV centers were employed in
scanning thermal microscopy Scanning thermal microscopy (SThM) is a type of scanning probe microscopy that maps the local temperature and thermal conductivity of an interface. The probe in a scanning thermal microscope is sensitive to local temperatures – providing a nano- ...
to measure high-resolution spatial maps of temperature and
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
(see image). Another possible use of the NV centers is as a detector to measure the full mechanical stress tensor in the bulk of the crystal. For this application, the stress-induced splitting of the zero-phonon-line is exploited, and its polarization properties. A robust frequency-modulated radio receiver using the electron-spin-dependent photoluminescence that operated up to 350 °C demonstrates the possibility for use in extreme conditions. In addition to the quantum optical applications, luminescence from the NV centers can be applied for imaging biological processes, such as fluid flow in living cells. This application relies on good compatibility of diamond nano-particles with the living cells and on favorable properties of photoluminescence from the NV centers (strong intensity, easy excitation and detection, temporal stability, etc.). Compared with large single-crystal diamonds, nanodiamonds are cheap (about 1 USD per gram) and available from various suppliers. NV centers are produced in diamond powders with sub-micrometre particle size using the standard process of irradiation and annealing described above. Due to the relatively small size of nanodiamond, NV centers can be produced by irradiating nanodiamond of 100 nm or less with medium energy H+ beam. This method reduces the required ion dose and reaction, making it possible to mass produce fluorescent nanodiamonds in ordinary laboratory. Fluorescent nanodiamond produced with such method is bright and photostable, making it excellent for long-term, three dimensional tracking of single particle in living cell. Those nanodiamonds are introduced in a cell, and their luminescence is monitored using a standard
fluorescence microscope A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microsc ...
. Further NV center has been hypothesized to be a potential bio-mimetic system for emulating radical pair spin dynamics of the avian compass.Cryptochrome and Magnetic Sensing
University of Illinois at Urbana-Champaign
Stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
from the NV center has been demonstrated, though it could be achieved only from the phonon side-band (i.e. broadband light) and not from the ZPL. For this purpose, the center has to be excited at a wavelength longer than ~650 nm, as higher-energy excitation ionizes the center. The first continuous-wave room-temperature maser has been demonstrated. It used 532-nm pumped NV centers held within a high Purcell factor microwave cavity and an external magnetic field of 4300 G. Continuous maser oscillation generated a coherent signal at ~9.2 GHz. The NV center can have a very long spin
coherence time For an electromagnetic wave, the coherence time is the time over which a propagating wave (especially a laser or maser beam) may be considered coherent, meaning that its phase is, on average, predictable. In long-distance transmission systems, ...
approaching the second regime. This is advantageous for applications in quantum sensing and
quantum communication Quantum information science is an interdisciplinary field that seeks to understand the analysis, processing, and transmission of information using quantum mechanics principles. It combines the study of Information science with quantum mechanics, qu ...
. Disadvantageous for these applications is the long radiative lifetime (~12 ns ) of the NV center and the strong phonon sideband in its emission spectrum. Both issues can be addressed by putting the NV center in an
optical cavity An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that forms a cavity resonator for light waves. Optical cavities are a major component of lasers, surrounding the gain medium and provi ...
.


Historical remarks

The microscopic model and most optical properties of ensembles of the NV centers have been firmly established in the 1970s based on the optical measurements combined with uniaxial stress and on the electron paramagnetic resonance. However, a minor error in EPR results (it was assumed that illumination is required to observe NV EPR signals) resulted in the incorrect multiplicity assignments in the energy level structure. In 1991 it was shown that EPR can be observed without illumination, which established the energy level scheme shown above. The magnetic splitting in the excited state has been measured only recently. The characterization of single NV centers has become a very competitive field nowadays, with many dozens of papers published in the most prestigious scientific journals. One of the first results was reported back in 1997. In that paper, it was demonstrated that the fluorescence of single NV centers can be detected by room-temperature fluorescence microscopy and that the defect shows perfect photostability. Also one of the outstanding properties of the NV center was demonstrated, namely room-temperature optically detected magnetic resonance.


See also

*
Crystallographic defects in diamond Imperfections in the crystal lattice of diamond are common. Such defects may be the result of lattice irregularities or extrinsic substitutional or interstitial impurities, introduced during or after the diamond growth. The defects affect the ...
*
Crystallographic defect A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell para ...
*
Material properties of diamond Diamond is the allotrope of carbon in which the carbon atoms are arranged in the specific type of cubic lattice called diamond cubic. It is a crystal that is transparent to opaque and which is generally isotropic (no or very weak birefringence ...


Notes


References

{{Quantum computing Diamond Spintronics Spectroscopy Crystallographic defects Quantum computing