Numerical Methods In Fluid Mechanics
   HOME

TheInfoList



OR:

Fluid motion In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
is governed by the
Navier–Stokes equations In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician Geo ...
, a set of coupled and nonlinear partial differential equations derived from the basic laws of conservation of
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
,
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
and
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
. The unknowns are usually the
flow velocity In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the f ...
, the
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
and
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
and
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
. The
analytical solution Generally speaking, analytic (from el, ἀναλυτικός, ''analytikos'') refers to the "having the ability to analyze" or "division into elements or principles". Analytic or analytical can also have the following meanings: Chemistry * A ...
of this equation is impossible hence scientists resort to laboratory experiments in such situations. The answers delivered are, however, usually qualitatively different since dynamical and geometric similitude are difficult to enforce simultaneously between the lab experiment and the
prototype A prototype is an early sample, model, or release of a product built to test a concept or process. It is a term used in a variety of contexts, including semantics, design, electronics, and Software prototyping, software programming. A prototyp ...
. Furthermore, the design and construction of these experiments can be difficult (and costly), particularly for stratified rotating flows.
Computational fluid dynamics Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate th ...
(CFD) is an additional tool in the arsenal of scientists. In its early days CFD was often controversial, as it involved additional approximation to the governing equations and raised additional (legitimate) issues. Nowadays CFD is an established discipline alongside theoretical and experimental methods. This position is in large part due to the exponential growth of computer power which has allowed us to tackle ever larger and more complex problems.


Discretization

The central process in CFD is the process of
discretization In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical ...
, i.e. the process of taking differential equations with an infinite number of
degrees of freedom Degrees of freedom (often abbreviated df or DOF) refers to the number of independent variables or parameters of a thermodynamic system. In various scientific fields, the word "freedom" is used to describe the limits to which physical movement or ...
, and reducing it to a system of finite degrees of freedom. Hence, instead of determining the solution everywhere and for all times, we will be satisfied with its calculation at a finite number of locations and at specified time intervals. The
partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
are then reduced to a system of algebraic equations that can be solved on a computer. Errors creep in during the discretization process. The nature and characteristics of the errors must be controlled in order to ensure that: * we are solving the correct equations (consistency property) * that the error can be decreased as we increase the number of degrees of freedom (stability and convergence). Once these two criteria are established, the power of computing machines can be leveraged to solve the problem in a numerically reliable fashion. Various discretization schemes have been developed to cope with a variety of issues. The most notable for our purposes are:
finite difference methods In numerical analysis, finite-difference methods (FDM) are a class of numerical techniques for solving differential equations by approximating Derivative, derivatives with Finite difference approximation, finite differences. Both the spatial dom ...
, finite volume methods,
finite element methods The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat t ...
, and
spectral methods Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. The idea is to write the solution of the differential equation as a sum of certain " basis functio ...
.


Finite difference method

Finite difference replace the infinitesimal limiting process of derivative calculation: : \lim_f'(x) = \frac with a finite limiting process,i.e. : f'(x) =\frac + O(\Delta x) The term O(\Delta x) gives an indication of the magnitude of the error as a function of the mesh spacing. In this instance, the error is halved if the grid spacing, _x is halved, and we say that this is a first order method. Most FDM used in practice are at least second order accurate except in very special circumstances. Finite Difference method is still the most popular numerical method for solution of PDEs because of their simplicity, efficiency and low computational cost. Their major drawback is in their geometric inflexibility which complicates their applications to general complex domains. These can be alleviated by the use of either mapping techniques and/or masking to fit the computational mesh to the computational domain.


Finite element method

The finite element method was designed to deal with problem with complicated computational regions. The PDE is first recast into a variational form which essentially forces the mean error to be small everywhere. The discretization step proceeds by dividing the computational domain into elements of triangular or rectangular shape. The solution within each element is interpolated with a polynomial of usually low order. Again, the unknowns are the solution at the collocation points. The CFD community adopted the FEM in the 1980s when reliable methods for dealing with advection dominated problems were devised.


Spectral method

Both finite element and finite difference methods are low order methods, usually of 2nd − 4th order, and have local approximation property. By local we mean that a particular collocation point is affected by a limited number of points around it. In contrast, spectral method have global approximation property. The interpolation functions, either polynomials or trigonomic functions are global in nature. Their main benefits is in the rate of convergence which depends on the smoothness of the solution (i.e. how many continuous derivatives does it admit). For infinitely smooth solution, the error decreases exponentially, i.e. faster than algebraic. Spectral methods are mostly used in the computations of homogeneous turbulence, and require relatively simple geometries. Atmospheric model have also adopted spectral methods because of their convergence properties and the regular spherical shape of their computational domain.


Finite volume method

Finite volume methods are primarily used in
aerodynamics Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dyn ...
applications where strong shocks and discontinuities in the solution occur. Finite volume method solves an integral form of the governing equations so that local continuity property do not have to hold.


Computational cost

The
CPU A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, and ...
time to solve the system of equations differs substantially from method to method. Finite differences are usually the cheapest on a per grid point basis followed by the finite element method and spectral method. However, a per grid point basis comparison is a little like comparing apple and oranges. Spectral methods deliver more accuracy on a per grid point basis than either FEM or FDM. The comparison is more meaningful if the question is recast as ”what is the computational cost to achieve a given error tolerance?”. The problem becomes one of defining the error measure which is a complicated task in general situations.


Forward Euler approximation

: \frac \approx \kappa u^n Equation is an explicit approximation to the original differential equation since no information about the unknown function at the future time (''n'' + 1)''t'' has been used on the right hand side of the equation. In order to derive the error committed in the approximation we rely again on Taylor series.


Backward difference

This is an example of an implicit method since the unknown ''u''(''n'' + 1) has been used in evaluating the slope of the solution on the right hand side; this is not a problem to solve for ''u''(''n'' + 1) in this scalar and linear case. For more complicated situations like a nonlinear right hand side or a system of equations, a nonlinear system of equations may have to be inverted.


References

Sources # Zalesak, S. T., 2005. The design of flux-corrected transport algorithms for structured grids. In: Kuzmin, D., Löhner, R., Turek, S. (Eds.), Flux-Corrected Transport. Springer # Zalesak, S. T., 1979. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics. # Leonard, B. P., MacVean, M. K., Lock, A. P., 1995. The flux integral method for multi-dimensional convection and diffusion. Applied Mathematical Modelling. # Shchepetkin, A. F., McWilliams, J. C., 1998. Quasi-monotone advection schemes based on explicit locally adaptive
dissipation In thermodynamics, dissipation is the result of an irreversible process that takes place in homogeneous thermodynamic systems. In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a ...
. Monthly Weather Review # Jiang, C.-S., Shu, C.-W., 1996. Efficient implementation of weighed eno schemes. Journal of Computational Physics # Finlayson, B. A., 1972. The Method of Weighed Residuals and Variational Principles. Academic Press. # Durran, D. R., 1999. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York. # Dukowicz, J. K., 1995. Mesh effects for rossby waves. Journal of Computational Physics # Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A., 1988. Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer-Verlag, New York. # Butcher, J. C., 1987. The Numerical Analysis of
Ordinary Differential Equations In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast w ...
. John Wiley and Sons Inc., NY. # Boris, J. P., Book, D. L., 1973. Flux corrected transport, i: Shasta, a fluid transport algorithm that works. Journal of Computational Physics Citations {{Reflist Computational fluid dynamics Numerical analysis Functional analysis