HOME

TheInfoList



OR:

A nuclear pumped laser is
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
pumped with the energy of fission fragments. The
lasing medium The active laser medium (also called a gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from ...
is enclosed in a tube lined with
uranium-235 Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nat ...
and subjected to high
neutron flux The neutron flux is a scalar quantity used in nuclear physics and nuclear reactor physics. It is the total distance travelled by all free neutrons per unit time and volume. Equivalently, it can be defined as the number of neutrons travelling ...
in a
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
core. The fission fragments of the uranium create excited plasma with inverse population of energy levels, which then lases. Other methods, e.g. the He-Ar laser, can use the He(n,p)H reaction, the transmutation of
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron. (In contrast, the most common isotope, helium-4, has two protons and two neutrons.) Helium-3 and hydrogen-1 are the only stable nuclides with ...
in a neutron flux, as the energy source, or employing the energy of the
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay but may also be produce ...
s. This technology may achieve high excitation rates with small laser volumes. Some example lasing media: *
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
* 3
helium Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
-
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
* 3helium-
krypton Krypton (from 'the hidden one') is a chemical element; it has symbol (chemistry), symbol Kr and atomic number 36. It is a colorless, odorless noble gas that occurs in trace element, trace amounts in the Earth's atmosphere, atmosphere and is of ...
* 3helium-
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...


Development

Research in nuclear pumped lasers started in the early 1970s when researchers were unable to produce a laser with a wavelength shorter than 110 nm with the end goal of creating an x-ray laser. When laser wavelengths become that short the laser requires a huge amount of energy which must also be delivered in an extremely short period of time. In 1975 it was estimated, by George Chapline and Lowell Wood from the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
, that “pumping a 10-keV (0.12-nm) laser would require around a watt per atom” in a pulse that was “10−15 seconds x the square of the wavelength in angstroms.” As this problem was unsolvable with the materials at hand and a laser oscillator was not working, research moved to creating pumps that used excited plasma. Early attempts used high-powered lasers to excite the plasma to create an even more highly powered laser. Results using this method were unsatisfying, and fell short of the goal. Livermore scientists first suggested using a nuclear reaction as a power source in 1975. By 1980 Livermore considered both nuclear bombs and nuclear reactors as viable energy sources for an x-ray laser. On November 14, 1980, the first successful test of the bomb-powered x-ray laser was conducted. The use of a bomb was initially supported over that of the reactor driven laser because it delivered a more intense beam. Livermore's research was almost entirely devoted to
missile defense Missile defense is a system, weapon, or technology involved in the detection, tracking, interception, and also the destruction of attacking missiles. Conceived as a defense against nuclear weapon, nuclear-armed intercontinental ballistic mi ...
using x-ray lasers. The idea was to mount a system of nuclear bombs in space where these bombs would each power approximately 50 lasers. Upon detonation these lasers would fire and theoretically destroy several dozen incoming nuclear missiles at once. Opponents{{who, date=March 2014 of this plan found many faults in such an approach and questioned aspects such as the power, range, accuracy, politics, and cost of such deployments. In 1985 a test titled ‘Goldstone’ revealed the delivered power to be less than believed. Efforts to focus the laser also failed. Fusion lasers (reactor driven lasers) started testing after the bomb-driven lasers proved successful. While prohibitively expensive (estimated at 30,000 dollars per test), research was easier in that tests could be performed several times a day and the equipment could be reused. In 1984, a test achieved wavelengths of less than 21 nm, the closest to an official x-ray laser yet. (There are many definitions for an x-ray laser, some of which require a wavelength of less than 10 nm). The Livermore method was to remove the outer electrons in heavy atoms to create a “neon-like” substance. When presented at an
American Physical Society The American Physical Society (APS) is a not-for-profit membership organization of professionals in physics and related disciplines, comprising nearly fifty divisions, sections, and other units. Its mission is the advancement and diffusion of ...
meeting, the success of the test was shared by an experiment from Princeton University which was better in size, cost, measured wavelength, and amplification than Livermore's test. Research has continued in the field of nuclear pumped lasers and it remains on the cutting edge of the field.


Uses

At least three uses for bomb pumped lasers have been proposed.


Propulsion

Laser propulsion is an alternative method of propulsion ideal for launching objects into orbit, as this method requires less fuel, meaning less mass must be launched. A nuclear pumped laser is ideal for this operation. A launch using laser propulsion requires high intensity, short pulses, good quality efine?/sup>, and a high power output. A nuclear pumped laser would theoretically be capable of meeting these requirements.


Manufacturing

The characteristics of the nuclear pumped laser make it ideal for applications in deep-cut welding, cutting thick materials, the heat treating of metals, vapor deposition of ceramics, and the production of sub-micron sized particles.


Weapon

Titled
Project Excalibur Project Excalibur was a Lawrence Livermore National Laboratory (LLNL) Cold Warera research program to develop an X-ray laser system as a ballistic missile defense (BMD) for the United States. The concept involved packing large numbers of expendab ...
, the program was a part of President Reagan's
Strategic Defense Initiative The Strategic Defense Initiative (SDI) was a proposed missile defense system intended to protect the United States from attack by ballistic nuclear missiles. The program was announced in 1983, by President Ronald Reagan. Reagan called for a ...
. Livermore Laboratories conceived of the initial idea and
Edward Teller Edward Teller (; January 15, 1908 – September 9, 2003) was a Hungarian and American Theoretical physics, theoretical physicist and chemical engineer who is known colloquially as "the father of the hydrogen bomb" and one of the creators of ...
developed and presented the idea to the president. Permission was granted to pursue the project though it has been reported Reagan was reluctant to incorporate nuclear devices in the nation's plan against nuclear devices. While initial tests were promising, the results never reached acceptable levels. Later, lead scientists were accused of falsifying the reports. Project Excalibur was cancelled several years later.Thomsen, Dietrich E. (14 December 1985). "Strategic defense of X-ray initiative". The Free Library. (1985). Retrieved May 08, 2013 from http://www.thefreelibrary.com/Strategic+defense+of+X-ray+initiative.-a04060251


References


External links


IPPE: Principle of operation of nuclear pumped laser
- contains a diagram
Abstract: Nuclear pumped laser II

1979 NASA report on using nuclear reactions to directly power a laser beam



Application of reactor-pumped lasers to power beaming, Repetti, T.E 1991.

Pulse reactor system for nuclear-pumped laser using low-enriched uranium. Obara, Takezawa. Energy Conversion and Management Volume 49, Issue 7, July 2008, 13th International Conference on Emerging Nuclear Energy Systems
Nuclear technology Laser types