HOME

TheInfoList



OR:

A nuclear localization signal ''or'' sequence (NLS) is an
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
sequence that 'tags' a protein for import into the
cell nucleus The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, h ...
by
nuclear transport Nuclear transport refers to the mechanisms by which molecules move across the nuclear membrane of a cell. The entry and exit of large molecules from the cell nucleus is tightly controlled by the nuclear pore complexes (NPCs). Although small molecul ...
. Typically, this signal consists of one or more short sequences of positively charged
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −C ...
s or
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the am ...
s exposed on the protein surface. Different nuclear localized proteins may share the same NLS. An NLS has the opposite function of a
nuclear export signal A nuclear export signal (NES) is a short target peptide containing 4 hydrophobic residues in a protein that targets it for export from the cell nucleus to the cytoplasm through the nuclear pore complex using nuclear transport. It has the opposite ...
(NES), which targets proteins out of the nucleus.


Types


Classical

These types of NLSs can be further classified as either monopartite or bipartite. The major structural differences between the two are that the two basic amino acid clusters in bipartite NLSs are separated by a relatively short spacer sequence (hence bipartite - 2 parts), while monopartite NLSs are not. The first NLS to be discovered was the sequence PKKKRKV in the
SV40 Large T-antigen SV40 large T antigen ( Simian Vacuolating Virus 40 TAg) is a hexamer protein that is a dominant-acting oncoprotein derived from the polyomavirus SV40. TAg is capable of inducing malignant transformation of a variety of cell types. The transfor ...
(a monopartite NLS). The NLS of
nucleoplasmin Nucleoplasmin, the first identified molecular chaperone is a thermostable acidic protein with a pentameric structure. The protein was first isolated from Xenopus species Functions The pentameric protein participates in various significant cellula ...
, KR AATKKAGQAKKK, is the prototype of the ubiquitous bipartite signal: two clusters of basic amino acids, separated by a spacer of about 10 amino acids. Both signals are recognized by
importin α Importin alpha, or karyopherin alpha refers to a class of adaptor proteins that are involved in the import of proteins into the cell nucleus. They are a sub-family of karyopherin proteins. Importin α is known to bind to the nuclear localizatio ...
. Importin α contains a bipartite NLS itself, which is specifically recognized by importin β. The latter can be considered the actual import mediator. Chelsky ''et al''. proposed the consensus sequence K-K/R-X-K/R for monopartite NLSs. A Chelsky sequence may, therefore, be part of the downstream basic cluster of a bipartite NLS. Makkah ''et al''. carried out comparative mutagenesis on the nuclear localization signals of SV40 T-Antigen (monopartite), C-myc (monopartite), and nucleoplasmin (bipartite), and showed amino acid features common to all three. The role of neutral and acidic amino acids was shown for the first time in contributing to the efficiency of the NLS. Rotello ''et al''. compared the nuclear localization efficiencies of eGFP fused NLSs of SV40 Large T-Antigen, nucleoplasmin (AVKRPAATKKAGQAKKKKLD), EGL-13 (MSRRRKANPTKLSENAKKLAKEVEN), c-Myc (PAAKRVKLD) and TUS-protein (KLKIKRPVK) through rapid intracellular protein delivery. They found significantly higher nuclear localization efficiency of c-Myc NLS compared to that of SV40 NLS.


Non-classical

There are many other types of NLS, such as the acidic M9 domain of hnRNP A1, the sequence KIPIK in yeast transcription repressor Matα2, and the complex signals of U snRNPs. Most of these NLSs appear to be recognized directly by specific receptors of the importin β family without the intervention of an importin α-like protein. A signal that appears to be specific for the massively produced and transported ribosomal proteins, seems to come with a specialized set of importin β-like nuclear import receptors. Recently a class of NLSs known as PY-NLSs has been proposed, originally by Lee ''et al.'' This PY-NLS motif, so named because of the
proline Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group but is rather a secondary amine. The secondary amine nitrogen is in the prot ...
-
tyrosine -Tyrosine or tyrosine (symbol Tyr or Y) or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the Gr ...
amino acid pairing in it, allows the protein to bind to Importin β2 (also known as transportin or karyopherin β2), which then translocates the cargo protein into the nucleus. The structural basis for the binding of the PY-NLS contained in Importin β2 has been determined and an inhibitor of import designed.


Discovery

The presence of the nuclear membrane that sequesters the cellular DNA is the defining feature of
eukaryotic cell Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
s. The nuclear membrane, therefore, separates the nuclear processes of DNA replication and
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
transcription from the cytoplasmic process of protein production. Proteins required in the nucleus must be directed there by some mechanism. The first direct experimental examination of the ability of nuclear proteins to accumulate in the nucleus was carried out by John Gurdon when he showed that purified nuclear proteins accumulate in the nucleus of frog (
Xenopus ''Xenopus'' () (Gk., ξενος, ''xenos''=strange, πους, ''pous''=foot, commonly known as the clawed frog) is a genus of highly aquatic frogs native to sub-Saharan Africa. Twenty species are currently described within it. The two best-known ...
) oocytes after being micro-injected into the cytoplasm. These experiments were part of a series that subsequently led to studies of nuclear reprogramming, directly relevant to stem cell research. The presence of several million pore complexes in the
oocyte An oocyte (, ), oöcyte, or ovocyte is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female ...
nuclear membrane and the fact that they appeared to admit many different molecules (insulin, bovine serum albumin, gold nanoparticles) led to the view that the pores are open channels and nuclear proteins freely enter the nucleus through the pore and must accumulate by binding to DNA or some other nuclear component. In other words, there was thought to be no specific transport mechanism. This view was shown to be incorrect by Dingwall and Laskey in 1982. Using a protein called nucleoplasmin, the archetypal ‘
molecular chaperone In molecular biology, molecular chaperones are proteins that assist the conformational folding or unfolding of large proteins or macromolecular protein complexes. There are a number of classes of molecular chaperones, all of which function to assi ...
’, they identified a domain in the protein that acts as a signal for nuclear entry. This work stimulated research in the area, and two years later the first NLS was identified in
SV40 Large T-antigen SV40 large T antigen ( Simian Vacuolating Virus 40 TAg) is a hexamer protein that is a dominant-acting oncoprotein derived from the polyomavirus SV40. TAg is capable of inducing malignant transformation of a variety of cell types. The transfor ...
(or SV40, for short). However, a functional NLS could not be identified in another nuclear protein simply on the basis of similarity to the SV40 NLS. In fact, only a small percentage of cellular (non-viral) nuclear proteins contained a sequence similar to the SV40 NLS. A detailed examination of nucleoplasmin identified a sequence with two elements made up of basic amino acids separated by a spacer arm. One of these elements was similar to the SV40 NLS but was not able to direct a protein to the cell nucleus when attached to a non-nuclear reporter protein. Both elements are required. This kind of NLS has become known as a bipartite classical NLS. The bipartite NLS is now known to represent the major class of NLS found in cellular nuclear proteins and structural analysis has revealed how the signal is recognized by a receptor (
importin α Importin alpha, or karyopherin alpha refers to a class of adaptor proteins that are involved in the import of proteins into the cell nucleus. They are a sub-family of karyopherin proteins. Importin α is known to bind to the nuclear localizatio ...
) protein (the structural basis of some monopartite NLSs is also known). Many of the molecular details of nuclear protein import are now known. This was made possible by the demonstration that nuclear protein import is a two-step process; the nuclear protein binds to the nuclear pore complex in a process that does not require energy. This is followed by an energy-dependent translocation of the nuclear protein through the channel of the pore complex. By establishing the presence of two distinct steps in the process the possibility of identifying the factors involved was established and led on to the identification of the importin family of NLS receptors and the
GTPase GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a pro ...
Ran Ran, RaN and ran may refer to: Arts and entertainment * ''Ran'' (film), a 1985 film directed by Akira Kurosawa * "Ran" (song), a 2013 Japanese song by Luna Sea * '' Ran Online'', a 2004 MMORPG (massively multiplayer online role playing game) * ...
.


Mechanism of nuclear import

Proteins gain entry into the nucleus through the nuclear envelope. The nuclear envelope consists of concentric membranes, the outer and the inner membrane. The inner and outer membranes connect at multiple sites, forming channels between the cytoplasm and the nucleoplasm. These channels are occupied by
nuclear pore complex A nuclear pore is a part of a large complex of proteins, known as a nuclear pore complex that spans the nuclear envelope, which is the double membrane surrounding the eukaryotic cell nucleus. There are approximately 1,000 nuclear pore complexe ...
es (NPCs), complex multiprotein structures that mediate the transport across the nuclear membrane. A protein translated with an NLS will bind strongly to
importin Importin is a type of karyopherin that transports protein molecules from the cell's cytoplasm to the nucleus. It does so by binding to specific recognition sequences, called nuclear localization sequences (NLS). Importin has two subunits, impo ...
(aka
karyopherin Karyopherins are proteins involved in transporting molecules between the cytoplasm and the nucleus of a eukaryotic cell. The inside of the nucleus is called the karyoplasm (or nucleoplasm). Generally, karyopherin-mediated transport occurs through ...
), and, together, the complex will move through the nuclear pore. At this point, Ran-GTP will bind to the importin-protein complex, and its binding will cause the importin to lose affinity for the protein. The protein is released, and now the Ran-GTP/importin complex will move back out of the nucleus through the nuclear pore. A
GTPase-activating protein GTPase-activating proteins or GTPase-accelerating proteins (GAPs) are a family of regulatory proteins whose members can bind to activated G proteins and stimulate their GTPase activity, with the result of terminating the signaling event. GAPs are ...
(GAP) in the cytoplasm
hydrolyzes Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis ...
the Ran-GTP to GDP, and this causes a conformational change in Ran, ultimately reducing its affinity for importin. Importin is released and Ran-GDP is recycled back to the nucleus where a
Guanine nucleotide exchange factor Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the release of guanosine diphosphate (GDP) to allow binding of guanosine triphosphate (GTP). A variety of unrelated struc ...
(GEF) exchanges its GDP back for GTP.


See also

* A
nuclear export signal A nuclear export signal (NES) is a short target peptide containing 4 hydrophobic residues in a protein that targets it for export from the cell nucleus to the cytoplasm through the nuclear pore complex using nuclear transport. It has the opposite ...
(NES) can direct a protein to be exported from the nucleus.


References


Further reading

* *


External links

* * * * {{DEFAULTSORT:Nuclear localisation Signal Cell biology Molecular genetics Short linear motifs