Non-tropical Cyclonic Storm
   HOME

TheInfoList



OR:

Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical
cyclone In meteorology, a cyclone () is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above (opposite to an anti ...
s are capable of producing anything from cloudiness and mild showers to severe gales, thunderstorms, blizzards, and tornadoes. These types of cyclones are defined as large scale (synoptic) low pressure weather systems that occur in the middle latitudes of the Earth. In contrast with tropical cyclones, extratropical cyclones produce rapid changes in temperature and dew point along broad lines, called weather fronts, about the center of the cyclone.


Terminology

The term "
cyclone In meteorology, a cyclone () is a large air mass that rotates around a strong center of low atmospheric pressure, counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere as viewed from above (opposite to an anti ...
" applies to numerous types of low pressure areas, one of which is the extratropical cyclone. The descriptor ''extratropical'' signifies that this type of cyclone generally occurs outside the tropics and in the middle latitudes of Earth between 30° and 60° latitude. They are termed ''mid-latitude cyclones'' if they form within those latitudes, or post-tropical cyclones if a tropical cyclone has intruded into the mid latitudes. Weather forecasters and the general public often describe them simply as " depressions" or "lows". Terms like frontal cyclone, frontal depression, frontal low, extratropical low, non-tropical low and hybrid low are often used as well. Extratropical cyclones are classified mainly as baroclinic, because they form along zones of temperature and dewpoint gradient known as frontal zones. They can become
barotropic In fluid dynamics, a barotropic fluid is a fluid whose density is a function of pressure only. The barotropic fluid is a useful model of fluid behavior in a wide variety of scientific fields, from meteorology to astrophysics. The density of most ...
late in their life cycle, when the distribution of heat around the cyclone becomes fairly uniform with its radius.


Formation

Extratropical cyclones form anywhere within the extratropical regions of the Earth (usually between 30° and 60° latitude from the
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can als ...
), either through cyclogenesis or extratropical transition. In a climatology study with two different cyclone algorithms a total of 49,745-72,931 extratropical cyclones in the Northern hemisphere and 71,289-74,229 extratropical cyclones in the Southern hemisphere were detected between 1979-2018 based on reanalysis data. A study of extratropical cyclones in the Southern Hemisphere shows that between the 30th and 70th parallels, there are an average of 37 cyclones in existence during any 6-hour period. A separate study in the
Northern Hemisphere The Northern Hemisphere is the half of Earth that is north of the Equator. For other planets in the Solar System, north is defined as being in the same celestial hemisphere relative to the invariable plane of the solar system as Earth's Nort ...
suggests that approximately 234 significant extratropical cyclones form each winter.


Cyclogenesis

Extratropical cyclones form along linear bands of temperature/dewpoint gradient with significant vertical wind shear, and are thus classified as baroclinic cyclones. Initially, cyclogenesis, or low pressure formation, occurs along frontal zones near a favorable quadrant of a maximum in the upper level jetstream known as a jet streak. The favorable quadrants are usually at the right rear and left front quadrants, where divergence ensues. The divergence causes air to rush out from the top of the air column. As mass in the column is reduced, atmospheric pressure at surface level (the weight of the air column) is reduced. The lowered pressure strengthens the cyclone (a low pressure system). The lowered pressure acts to draw in air, creating convergence in the low-level wind field. Low-level convergence and upper-level divergence imply upward motion within the column, making cyclones cloudy. As the cyclone strengthens, the cold front sweeps towards the
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can als ...
and moves around the back of the cyclone. Meanwhile, its associated warm front progresses more slowly, as the cooler air ahead of the system is denser, and therefore more difficult to dislodge. Later, the cyclones occlude as the poleward portion of the cold front overtakes a section of the warm front, forcing a tongue, or trowal, of warm air aloft. Eventually, the cyclone will become barotropically cold and begin to weaken. Atmospheric pressure can fall very rapidly when there are strong upper level forces on the system. When pressures fall more than per hour, the process is called explosive cyclogenesis, and the cyclone can be described as a
bomb A bomb is an explosive weapon that uses the Exothermic process, exothermic reaction of an explosive material to provide an extremely sudden and violent release of energy. Detonations inflict damage principally through ground- and atmosphere-t ...
. These bombs rapidly drop in pressure to below under favorable conditions such as near a natural
temperature gradient A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature gradient is a dimensional quantity expressed in units of degree ...
like the
Gulf Stream The Gulf Stream, together with its northern extension the North Atlantic Current, North Atlantic Drift, is a warm and swift Atlantic Ocean, Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida a ...
, or at a preferred quadrant of an upper-level jet streak, where upper level divergence is best. The stronger the upper level divergence over the cyclone, the deeper the cyclone can become. Hurricane-force extratropical cyclones are most likely to form in the northern Atlantic and northern Pacific oceans in the months of December and January. On 14 and 15 December 1986, an extratropical cyclone near Iceland deepened to below , which is a pressure equivalent to a
category 5 hurricane Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
. In the Arctic, the average pressure for cyclones is during the winter, and during the summer.


Extratropical transition

Tropical cyclones often transform into extratropical cyclones at the end of their tropical existence, usually between 30° and 40° latitude, where there is sufficient
forcing Forcing may refer to: Mathematics and science * Forcing (mathematics), a technique for obtaining independence proofs for set theory *Forcing (recursion theory), a modification of Paul Cohen's original set theoretic technique of forcing to deal with ...
from upper-level troughs or shortwaves riding the Westerlies for the process of extratropical transition to begin. During this process, a cyclone in extratropical transition (known across the eastern North Pacific and North Atlantic oceans as the post-tropical stage), will invariably form or connect with nearby fronts and/or troughs consistent with a baroclinic system. Due to this, the size of the system will usually appear to increase, while the core weakens. However, after transition is complete, the storm may re-strengthen due to baroclinic energy, depending on the environmental conditions surrounding the system. The cyclone will also distort in shape, becoming less symmetric with time. During extratropical transition, the cyclone begins to tilt back into the colder airmass with height, and the cyclone's primary energy source converts from the release of latent heat from condensation (from thunderstorms near the center) to baroclinic processes. The low pressure system eventually loses its warm core and becomes a cold-core system. The peak time of
subtropical The subtropical zones or subtropics are geographical zone, geographical and Köppen climate classification, climate zones to the Northern Hemisphere, north and Southern Hemisphere, south of the tropics. Geographically part of the Geographical z ...
cyclogenesis (the midpoint of this transition) in the North Atlantic is in the months of September and October, when the difference between the temperature of the air aloft and the sea surface temperature is the greatest, leading to the greatest potential for instability. On rare occasions, an extratropical cyclone can transit into a tropical cyclone if it reaches an area of ocean with warmer waters and an environment with less vertical wind shear. An example of this happening is in the
1991 Perfect Storm The 1991 Perfect Storm, also known as The No-Name Storm (especially in the years immediately after it took place) and the Halloween Gale/Storm, was a nor'easter that absorbed Hurricane Grace, and ultimately evolved into a small unnamed hurrican ...
. The process known as "tropical transition" involves the usually slow development of an extratropically cold core vortex into a tropical cyclone. The Joint Typhoon Warning Center uses the extratropical transition (XT) technique to subjectively estimate the intensity of tropical cyclones becoming extratropical based on visible and infrared
satellite imagery Satellite images (also Earth observation imagery, spaceborne photography, or simply satellite photo) are images of Earth collected by imaging satellites operated by governments and businesses around the world. Satellite imaging companies sell ima ...
. Loss of central convection in transitioning tropical cyclones can cause the Dvorak technique to fail; the loss of convection results in unrealistically low estimates using the Dvorak technique. The system combines aspects of the Dvorak technique, used for estimating tropical cyclone intensity, and the Hebert-Poteat technique, used for estimating subtropical cyclone intensity. The technique is applied when a tropical cyclone interacts with a frontal boundary or loses its central convection while maintaining its forward speed or accelerating. The XT scale corresponds to the Dvorak scale and is applied in the same way, except that "XT" is used instead of "T" to indicate that the system is undergoing extratropical transition. Also, the XT technique is only used once extratropical transition begins; the Dvorak technique is still used if the system begins dissipating without transition. Once the cyclone has completed transition and become cold-core, the technique is no longer used.


Structure


Surface pressure and wind distribution

The windfield of an extratropical cyclone constricts with distance in relation to surface level pressure, with the lowest pressure being found near the center, and the highest winds typically just on the cold/poleward side of warm fronts, occlusions, and cold fronts, where the pressure gradient force is highest. The area poleward and west of the cold and warm fronts connected to extratropical cyclones is known as the cold sector, while the area equatorward and east of its associated cold and warm fronts is known as the warm sector. The wind flow around an extratropical cyclone is counterclockwise in the northern hemisphere, and clockwise in the southern hemisphere, due to the Coriolis effect (this manner of rotation is generally referred to as ''cyclonic''). Near this center, the pressure gradient force (from the pressure at the center of the cyclone compared to the pressure outside the cyclone) and the Coriolis force must be in an approximate balance for the cyclone to avoid collapsing in on itself as a result of the difference in pressure. The central pressure of the cyclone will lower with increasing maturity, while outside of the cyclone, the sea-level pressure is about average. In most extratropical cyclones, the part of the cold front ahead of the cyclone will develop into a warm front, giving the frontal zone (as drawn on surface weather maps) a wave-like shape. Due to their appearance on satellite images, extratropical cyclones can also be referred to as frontal waves early in their life cycle. In the United States, an old name for such a system is "warm wave". In the northern hemisphere, once a cyclone occludes, a trough of warm air aloft—or "trowal" for short—will be caused by strong southerly winds on its eastern periphery rotating aloft around its northeast, and ultimately into its northwestern periphery (also known as the warm conveyor belt), forcing a surface trough to continue into the cold sector on a similar curve to the occluded front. The trowal creates the portion of an occluded cyclone known as its comma head, due to the
comma The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline ...
-like shape of the mid-tropospheric cloudiness that accompanies the feature. It can also be the focus of locally heavy precipitation, with thunderstorms possible if the atmosphere along the trowal is unstable enough for convection.


Vertical structure

Extratropical cyclones slant back into colder air masses and strengthen with height, sometimes exceeding 30,000 feet (approximately 9 km) in depth. Above the surface of the earth, the air temperature near the center of the cyclone is increasingly colder than the surrounding environment. These characteristics are the direct opposite of those found in their counterparts, tropical cyclones; thus, they are sometimes called "cold-core lows". Various charts can be examined to check the characteristics of a cold-core system with height, such as the chart, which is at about altitude. Cyclone phase diagrams are used to tell whether a cyclone is tropical, subtropical, or extratropical.


Cyclone evolution

There are two models of cyclone development and lifecycles in common use: the Norwegian model and the Shapiro–Keyser model.


Norwegian cyclone model

Of the two theories on extratropical cyclone structure and life cycle, the older is the Norwegian Cyclone Model, developed during World War I. In this theory, cyclones develop as they move up and along a frontal boundary, eventually occluding and reaching a barotropically cold environment. It was developed completely from surface-based weather observations, including descriptions of clouds found near frontal boundaries. This theory still retains merit, as it is a good description for extratropical cyclones over continental landmasses.


Shapiro–Keyser model

A second competing theory for extratropical cyclone development over the oceans is the Shapiro–Keyser model, developed in 1990. Its main differences with the Norwegian Cyclone Model are the fracture of the cold front, treating warm-type occlusions and warm fronts as the same, and allowing the cold front to progress through the warm sector perpendicular to the warm front. This model was based on oceanic cyclones and their frontal structure, as seen in surface observations and in previous projects which used aircraft to determine the vertical structure of fronts across the northwest Atlantic.


Warm seclusion

A warm seclusion is the mature phase of the extratropical cyclone lifecycle. This was conceptualized after the ERICA field experiment of the late 1980s, which produced observations of intense marine cyclones that indicated an anomalously warm low-level thermal structure, secluded (or surrounded) by a bent-back warm front and a coincident chevron-shaped band of intense surface winds. The Norwegian Cyclone Model, as developed by the Bergen School of Meteorology, largely observed cyclones at the tail end of their lifecycle and used the term occlusion to identify the decaying stages. Warm seclusions may have cloud-free,
eye Eyes are organs of the visual system. They provide living organisms with vision, the ability to receive and process visual detail, as well as enabling several photo response functions that are independent of vision. Eyes detect light and conv ...
-like features at their center (reminiscent of tropical cyclones), significant pressure falls, hurricane-force winds, and moderate to strong convection. The most intense warm seclusions often attain pressures less than 950 millibars (28.05 inHg) with a definitive lower to mid-level warm core structure. A warm seclusion, the result of a baroclinic lifecycle, occurs at latitudes well poleward of the tropics. As latent heat
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ph ...
releases are important for their development and intensification, most warm seclusion events occur over the oceans; they may impact coastal nations with hurricane force winds and torrential rain. Climatologically, the Northern Hemisphere sees warm seclusions during the cold season months, while the Southern Hemisphere may see a strong cyclone event such as this during all times of the year. In all tropical basins, except the Northern Indian Ocean, the extratropical transition of a tropical cyclone may result in reintensification into a warm seclusion. For example, Hurricane Maria (2005) and
Hurricane Cristobal Hurricane Cristobal was a moderately strong Atlantic tropical cyclone that affected multiple landmasses from Puerto Rico to Iceland in late August and early September 2014. Slow to develop and plagued by unfavorable wind shear for most of ...
(2014) each re-intensified into a strong baroclinic system and achieved warm seclusion status at maturity (or lowest pressure).


Motion

Extratropical cyclones are generally driven, or "steered", by deep westerly winds in a general west to east motion across both the Northern and Southern hemispheres of the Earth. This general motion of atmospheric flow is known as "zonal". Where this general trend is the main steering influence of an extratropical cyclone, it is known as a "
zonal flow regime Zonal and meridional flow are directions and regions of fluid flow on a globe. Zonal flow follows a pattern along latitudinal lines, latitudinal circles or in the west–east direction. Meridional flow follows a pattern from north to south, ...
". When the general flow pattern buckles from a zonal pattern to the meridional pattern, a slower movement in a north or southward direction is more likely. Meridional flow patterns feature strong, amplified troughs and ridges, generally with more northerly and southerly flow. Changes in direction of this nature are most commonly observed as a result of a cyclone's interaction with other low pressure systems, troughs, ridges, or with anticyclones. A strong and stationary anticyclone can effectively block the path of an extratropical cyclone. Such blocking patterns are quite normal, and will generally result in a weakening of the cyclone, the weakening of the anticyclone, a diversion of the cyclone towards the anticyclone's periphery, or a combination of all three to some extent depending on the precise conditions. It is also common for an extratropical cyclone to strengthen as the blocking anticyclone or ridge weakens in these circumstances. Where an extratropical cyclone encounters another extratropical cyclone (or almost any other kind of cyclonic vortex in the atmosphere), the two may combine to become a binary cyclone, where the vortices of the two cyclones rotate around each other (known as the " Fujiwhara effect"). This most often results in a merging of the two low pressure systems into a single extratropical cyclone, or can less commonly result in a mere change of direction of either one or both of the cyclones. The precise results of such interactions depend on factors such as the size of the two cyclones, their strength, their distance from each other, and the prevailing atmospheric conditions around them.


Effects


General

Extratropical cyclones can bring mild weather with a little rain and surface winds of , or they can be cold and dangerous with torrential rain and winds exceeding , (sometimes referred to as windstorms in Europe). The band of precipitation that is associated with the warm front is often extensive. In mature extratropical cyclones, an area known as the comma head on the northwest periphery of the surface low can be a region of heavy precipitation, frequent thunderstorms, and thundersnows. Cyclones tend to move along a predictable path at a moderate rate of progress. During fall, winter, and spring, the atmosphere over continents can be cold enough through the depth of the troposphere to cause snowfall.


Severe weather

Squall lines, or solid bands of strong thunderstorms, can form ahead of cold fronts and lee troughs due to the presence of significant atmospheric moisture and strong upper level divergence, leading to
hail Hail is a form of solid precipitation. It is distinct from ice pellets (American English "sleet"), though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fal ...
and high winds. When significant directional wind shear exists in the atmosphere ahead of a cold front in the presence of a strong upper-level jet stream, tornado formation is possible. Although tornadoes can form anywhere on Earth, the greatest number occur in the
Great Plains The Great Plains (french: Grandes Plaines), sometimes simply "the Plains", is a broad expanse of flatland in North America. It is located west of the Mississippi River and east of the Rocky Mountains, much of it covered in prairie, steppe, an ...
in the United States, because downsloped winds off the north–south oriented Rocky Mountains, which can form a dryline, aid their development at any strength. Explosive development of extratropical cyclones can be sudden. The storm known in Great Britain and Ireland as the " Great Storm of 1987" deepened to with a highest recorded wind of , resulting in the loss of 19 lives, 15 million trees, widespread damage to homes and an estimated economic cost of £1.2 billion ( US$2.3 billion). Although most tropical cyclones that become extratropical quickly dissipate or are absorbed by another weather system, they can still retain winds of hurricane or gale force. In 1954, Hurricane Hazel became extratropical over North Carolina as a strong Category 3 storm. The Columbus Day Storm of 1962, which evolved from the remains of Typhoon Freda, caused heavy damage in Oregon and Washington, with widespread damage equivalent to at least a Category 3. In 2005, Hurricane Wilma began to lose tropical characteristics while still sporting Category 3-force winds (and became fully extratropical as a Category 1 storm). In summer, extratropical cyclones are generally weak, but some of the systems can cause significant floods overland because of torrential rainfall. The
July 2016 North China cyclone The July 2016 North China cyclone was a devastating extratropical cyclone which produced torrential precipitation and caused widespread flash floods over North China and portions of nearby regions, resulting in at least 184 deaths and Renminbi, ¥3 ...
never brought gale-force sustained winds, but it caused devastating floods in mainland China, resulting in at least 184 deaths and ¥33.19 billion ( US$4.96 billion) of damage. An emerging topic is the co-occurrence of wind and precipitation extremes, so-called compound extreme events, induced by extratropical cyclones. Such compound events account for 3–5% of the total number of cyclones.


Climate and general circulation

In the classic analysis by Edward Lorenz (the
Lorenz energy cycle The Lorenz energy cycle describes the generation, conversion and dissipation of energy in the general atmospheric circulation. It is named after the meteorologist Edward N. Lorenz who worked on its mathematical formulation in the 1950s. Descrip ...
), extratropical cyclones (so-called atmospheric transients) acts as a mechanism in converting potential energy that is created by pole to equator temperature gradients to eddy kinetic energy. In the process, the pole-equator temperature gradient is reduced (i.e. energy is transported poleward to warm up the higher latitudes). The existence of such transients are also closely related to the formation of the Icelandic and Aleutian Low — the two most prominent general circulation features in the mid- to sub-polar northern latitudes. The two lows are formed by both the transport of kinetic energy and the latent heating (the energy released when water phase changed from vapor to liquid during precipitation) from the extratropical cyclones.


Historic storms

The Great Storm of 1703 was a particularly violent cyclone, being one of the most severe storms in British history. It has been estimated that wind gusts reached at least . A violent storm during the Crimean War on November 14, 1854, wrecked 30 vessels, and sparked investigations into meteorology and forecasting in Europe. In the United States, the Columbus Day Storm of 1962, one of many Pacific Northwest windstorms, led to Oregon's lowest measured pressure of , violent winds, and US$170 million in damage (1964 dollars; $1.56 billion in 2022 dollars). The "Wahine storm" was an extratropical cyclone that struck Wellington, New Zealand on April 10, 1968, so named after causing the inter-island ferry to strike a reef and founder at the entrance to Wellington Harbour, resulting in 53 deaths. On November 10, 1975, an extratropical storm on Lake Superior contributed to the sinking of the near the Canada–US border, 15 NM northwest of the entrance to Whitefish Bay. A rapidly strengthening storm struck Vancouver Island on October 11, 1984, and inspired the development of moored buoys off the western coast of Canada. The
Braer Storm of January 1993 The Braer Storm was the most intense extratropical cyclone ever recorded over the northern Atlantic Ocean, as well as the strongest recorded worldwide. Developing as a weak frontal wave on 8 January 1993, the system moved rapidly northeast. The ...
was the strongest extratropical cyclone known to occur across the northern Atlantic Ocean, with a central pressure of . In the Southern Hemisphere, a violent extratropical storm hit Uruguay on August 23–24, 2005, killing 10 people. The system's winds exceeded while
Montevideo Montevideo () is the Capital city, capital and List of cities in Uruguay, largest city of Uruguay. According to the 2011 census, the city proper has a population of 1,319,108 (about one-third of the country's total population) in an area of . M ...
, the country's capital with 1.5 million inhabitants, was affected by tropical storm-force winds for over 12 hours and by hurricane-force winds for nearly four hours. Peak gusts were registered at Carrasco International Airport as and at the Harbour of Montevideo as . The lowest reported pressure was . Extratropical cyclones are common in this part of the globe during fall, winter and spring months. The winds usually peak to , and winds of are very uncommon. In 2012, Hurricane Sandy transitioned to a post-tropical cyclone on the night of October 29; a few minutes later it made landfall on the New Jersey coast as an extratropical storm with winds similar to a Category 1 hurricane and a wind field of over . In 2018, in Italy, the
Vaia Storm Storm Adrian (also known as Vaia) was an intense Mediterranean storm which brought severe conditions to Northern Italy and surrounding regions. it was one of the costliest of the 2018-19 named storms, causing £2.9 billion (≥ €3.3 billion) i ...
, causes frequent gusts of around 55 kn the whole peninsula with peaks of 128 kn in the alpine areas, leading to the fall of 14 million trees. In 2022, Hurricane Fiona transitioned into a post-tropical cyclone on the night of September 23, and became the most intense and costliest post-tropical cyclone to hit Canada on record.


See also

* Nor'easter * Sudestada * Cyclogenesis


References


External links

* {{DEFAULTSORT:Extratropical Cyclone Articles containing video clips