HOME

TheInfoList



OR:

The no-hiding theorem states that if information is lost from a system via
decoherence Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wa ...
, then it moves to the subspace of the environment and it cannot remain in the correlation between the system and the environment. This is a fundamental consequence of the
linearity Linearity is the property of a mathematical relationship (''function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear r ...
and
unitarity In quantum physics, unitarity is the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of quant ...
of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
. Thus, information is never lost. This has implications in
black hole information paradox The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from wh ...
and in fact any process that tends to lose information completely. The no-hiding theorem is robust to imperfection in the physical process that seemingly destroys the original information. This was proved by Samuel L. Braunstein and Arun K. Pati in 2007. In 2011, the no-hiding theorem was experimentally tested using
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
devices where a single
qubit In quantum computing, a qubit () or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, ...
undergoes complete
randomization Randomization is the process of making something random. Randomization is not haphazard; instead, a random process is a sequence of random variables describing a process whose outcomes do not follow a deterministic pattern, but follow an evolution d ...
; i.e., a pure state transforms to a random mixed state. Subsequently, the lost information has been recovered from the ancilla qubits using suitable local unitary transformation only in the environment
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
in accordance with the no-hiding theorem. This experiment for the first time demonstrated the conservation of
quantum information Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both th ...
.


Formal statement

Let , \psi\rangle be an arbitrary
quantum state In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in ...
in some
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
and let there be a physical process that transforms , \psi\rangle \langle \psi , \rightarrow \rho with \rho = \sum_k p_k , k\rangle \langle k, .
If \rho is independent of the input state , \psi\rangle , then in the enlarged Hilbert space the mapping is of the form , \psi\rangle \otimes , A\rangle \rightarrow \sum_k \sqrt , k \rangle \otimes , A_k(\psi) \rangle = \sum_k \sqrt , k \rangle \otimes (, q_k \rangle \otimes , \psi\rangle \oplus 0), where , A\rangle is the initial state of the environment, , A_k(\psi) \rangle 's are the
orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space ''V'' with finite dimension is a basis for V whose vectors are orthonormal, that is, they are all unit vectors and orthogonal to each other. For example, ...
of the environment Hilbert space and \oplus 0 denotes the fact that one may augment the unused dimension of the environment Hilbert space by zero vectors. The proof of the no-hiding theorem is based on the linearity and the unitarity of quantum mechanics. The original information which is missing from the final state simply remains in the subspace of the environmental Hilbert space. Also, note that the original information is not in the correlation between the system and the environment. This is the essence of the no-hiding theorem. One can in principle, recover the lost information from the environment by local unitary transformations acting only on the environment Hilbert space. The no-hiding theorem provides new insights to the nature of quantum information. For example, if classical information is lost from one system it may either move to another system or can be hidden in the correlation between a pair of bit strings. However, quantum information cannot be completely hidden in correlations between a pair of subsystems. Quantum mechanics allows only one way to completely hide an arbitrary quantum state from one of its subsystems. If it is lost from one subsystem, then it moves to other subsystems.


Conservation of quantum information

In physics, conservation laws play important roles. For example, the law of conservation of energy states that the energy of a closed system must remain constant. It can neither increase nor decrease without coming in contact with an external system. If we consider the whole universe as a closed system, the total amount of energy always remains the same. However, the form of energy keeps changing. One may wonder if there is any such law for the conservation of information. In the classical world, information can be copied and deleted perfectly. In the quantum world, however, the conservation of quantum information should mean that information cannot be created nor destroyed. This concept stems from two fundamental theorems of quantum mechanics: the
no-cloning theorem In physics, the no-cloning theorem states that it is impossible to create an independent and identical copy of an arbitrary unknown quantum state, a statement which has profound implications in the field of quantum computing among others. The theore ...
and the
no-deleting theorem In physics, the no-deleting theorem of quantum information theory is a no-go theorem which states that, in general, given two copies of some arbitrary quantum state, it is impossible to delete one of the copies. It is a time-reversed dual to the no ...
. But the no-hiding theorem is a more general proof of conservation of quantum information which originates from the proof of conservation of wave function in quantum theory. It may be noted that the conservation of entropy holds for a quantum system undergoing unitary time evolution and if entropy represents information in quantum theory, then it is believed then that information should somehow be conserved. For example, one can prove that pure states remain pure states and probabilistic combination of pure states (called as mixed states) remain mixed states under unitary evolution. However, it was never proved that if the probability amplitude disappears from one system, it will reappear in another system. Now, using the no-hiding theorem one can make a precise statement. One may say that as energy keeps changing its form, the wave function keep moving from one Hilbert space to another Hilbert space. Since the wave function contains all the relevant information about a physical system, the conservation of wave function is tantamount to conservation of quantum information.


References

Theorems in quantum mechanics Quantum information theory No-go theorems {{quantum-stub