HOME

TheInfoList



OR:

Nitinol biocompatibility is an important factor in biomedical applications.
Nitinol Nickel titanium, also known as Nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., Nitinol 55 and ...
(NiTi), which is formed by alloying
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
and
titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
(~ 50% Ni), is a
shape-memory alloy In metallurgy, a shape-memory alloy (SMA) is an alloy that can be deformed when cold but returns to its pre-deformed ("remembered") shape when heated. It may also be called memory metal, memory alloy, smart metal, smart alloy, or muscle wire. P ...
with superelastic properties more similar to that of bone, when compared to stainless steel, another commonly used
biomaterial A biomaterial is a substance that has been engineered to interact with biological systems for a medical purpose, either a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic one. As a science, biomateria ...
. Biomedical applications that utilize Nitinol include
stents In medicine, a stent is a metal or plastic tube inserted into the lumen of an anatomic vessel or duct to keep the passageway open, and stenting is the placement of a stent. A wide variety of stents are used for different purposes, from expanda ...
, heart valve tools, bone anchors, staples, septal defect devices and implants. It is a commonly used biomaterial especially in the development of stent technology. Metal implants containing a combination of
biocompatible Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
metals or used in conjunction with other biomaterials are often considered the standard for many implant types. Passivation is a process that removes corrosive implant elements from the implant-body interface and creates an oxide layer on the surface of the implant. The process is important for making biomaterials more biocompatible.


Overview of common passivation methods

When materials are introduced to the body it is important not only that the material does not damage the body, but also that the environment of the body does not damage the implant. One method that prevents the negative effects resulting from this interaction is called passivation. In general, passivation is considered to be a process that creates a non-reactive layer at the surface of materials, such that the material may be protected from damage caused by the environment. Passivation can be accomplished through many mechanisms. Passive layers can be made through the assembly of monolayers through polymer grafting. Often, for corrosion protection, passive layers are created through the formation of oxide or nitride layers at the surface.


Oxide films

Passivation often occurs naturally in some metals like titanium, a metal that often forms an oxide layer mostly composed of TiO2. This process occurs spontaneously as the
enthalpy of formation Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant p ...
of TiO2 is negative. In alloys, such as nitinol, the formation of an oxide layer not only protects against corrosion, but also removes Ni atoms from the surface of the material. Removing certain elements from the surface of materials is another form of passivation. In nitinol, the removal of Ni is important, because Ni is toxic if leached into the body.Shabalovskaya SA. Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Bio-Med Mater Engin. 2002; 12: 69-109. Stainless steel is commonly passivated by the removal of iron from the surface through the use of acids and heat. Nitric acid is commonly used as a mild oxidant to create the thin oxide film on the surface of materials that protects against corrosion.


Electropolishing

Another mode of passivation involves polishing. Mechanical polishing removes many surface impurities and crystal structure breaks that may promote corrosion.
Electropolishing Electropolishing, also known as electrochemical polishing, anodic polishing, or electrolytic polishing (especially in the metallography field), is an electrochemical process that removes material from a metallic workpiece, reducing the surface roug ...
is even more effective, because it doesn’t leave the scratches that mechanical polishing will. Electropolishing is accomplished by creating
electrochemical cell An electrochemical cell is a device capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions. The electrochemical cells which generate an electric current are called voltaic o ...
s where the material of interest is used as the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
. The surface will have jagged qualities where certain points are higher than others. In this cell the current density will be higher at the higher points and cause those points dissolve at a higher rate than the lower points, thus smoothing the surface. Crystal lattice point impurities will also be removed as the current will force these high-energy impurities to dissolve from the surface.


Coatings

Another commonly used method of passivation is accomplished through coating the material with polymer layers. Layers composed of
polyurethane Polyurethane (; often abbreviated PUR and PU) refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from ...
have been used to improve biocompatibility, but have seen limited success. Coating materials with biologically similar molecules has seen much better success. For example,
phosphorylcholine :''Phosphorylcholine refers to the functional group derived from phosphocholine. Also not to be confused with phosphatidylcholine.'' Phosphorylcholine (abbreviated ChoP) is the hydrophilic polar head group of some phospholipids, which is compose ...
surface modified stents have exhibited reduced thrombogenic activity. Passivation is an extremely important area of research for biomedical applications, as the body is a harsh environment for materials and materials can damage the body through leaching and corrosion. All of the above passivation methods have been used in the development of nitinol biomaterials to produce the most biocompatible implants.


Influence of surface passivation on biocompatibility

Surface passivation techniques can greatly increase the corrosion resistance of nitinol. In order for nitinol to have the desired superelastic and shape memory properties, heat treatment is required. After heat treatment, the surface oxide layer contains a larger concentration of nickel in the form of NiO2 and NiO. This increase in nickel has been attributed to the diffusion of nickel out of the bulk material and into the surface layer during elevated temperature treatments. Surface characterization methods have shown that some surface passivation treatments decrease the concentration of NiO2 and NiO within the surface layer, leaving a higher concentration of the more stable TiO2 than in raw, heat-treated Nitinol.O’Brien B, Carroll WM, Kelly MJ. Passivation of nitinol wire for vascular implants a demonstration of the benefits. Biomaterials. 2002; 23: 1739-1748. The decrease in nickel concentration in the surface layer of nitinol is correlated with a greater corrosion resistance. A potentiodynamic test is commonly employed to measure a material’s resistance to corrosion. This test determines the electrical potential at which a material begins to corrode. The measurement is called the pitting or breakdown potential. After passivation in a nitric acid solution, Nitinol stent components showed significantly higher breakdown potentials than those that were unpassivated. In fact, there are many surface treatments that can greatly enhance the breakdown potentials of Nitinol. These treatments include mechanical polishing, electropolishing, and chemical treatments such as, Nitric Oxide submersion, etching of the raw surface oxide layer, and pickling to break down bulk material near the surface.
Thrombogenicity Thrombogenicity refers to the tendency of a material in contact with the blood to produce a thrombus, or clot. It not only refers to fixed thrombi but also to emboli, thrombi which have become detached and travel through the bloodstream. Thrombo ...
, a material’s tendency to induce clot formation, is an important factor that determines the biocompatibility of any biomaterial that comes into contact with the bloodstream. There are two proteins,
fibrinogen Fibrinogen (factor I) is a glycoprotein complex, produced in the liver, that circulates in the blood of all vertebrates. During tissue and vascular injury, it is converted enzymatically by thrombin to fibrin and then to a fibrin-based blood cl ...
and
albumin Albumin is a family of globular proteins, the most common of which are the serum albumins. All the proteins of the albumin family are water-soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Albumins ...
, that first adsorb to the surface of a foreign object in contact with blood. It has been suggested that fibrinogen may cause platelet activation due to a breakdown of the protein structure as it interacts with high energy
grain boundaries In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal ...
on certain surfaces. Albumin on the other hand, inhibits platelet activation. This implies that there are two mechanisms which can help lower thrombogenicity, an amorphous surface layer where there will be no grain boundary interactions with fibrinogen, and a surface with a higher affinity to albumin than fibrinogen. Just as thrombogenicity is important in determining suitability of other biomaterials, it is equally important with Nitinol as a stent material. Currently, when stents are implanted, the patient receives antiplatelet, antiaggregant therapy for a year or more in order to prevent the formation of a clot near the stent. By the time the drug therapy has ceased, ideally, a layer of endothelial cells, which line the inside of blood vessels would coat the outside of the stent. The stent is effectively integrated into the surrounding tissue and no longer in direct contact with the blood. There have been many attempts made using surface treatments to create stents that are more biocompatible and less thrombogenic, in an attempt to reduce the need for extensive antiplatelet therapy. Surface layers that are higher in nickel concentration cause less clotting due to albumin’s affinity to nickel. This is opposite of the surface layer characteristics that increase corrosion resistance. In vitro tests use indicators of thrombosis, such as platelet,
Tyrosine aminotransferase Tyrosine aminotransferase (or tyrosine transaminase) is an enzyme present in the liver and catalyzes the conversion of tyrosine to 4-hydroxyphenylpyruvate. L-tyrosine + 2-oxoglutarate \rightleftharpoons 4-hydroxyphenylpyruvate + L-glutam ...
, and β-TG levels. Surface treatments that have to some extent, lowered thrombogenicity in vitro are: * Electropolishing * Sandblasting * Polyurethane coatings * Aluminum coatingsTepe G, Schmehl J, Wendel HP, Schaffner S, Heller S, Gianotti M, Claussen CD, Duda SH. Reduced thrombogenicity of nitinol stents – in vitro evaluation of different surface modifications and coatings. Biomaterials. 2006; 27: 643-650. Another area of research involves binding various pharmaceutical agents such as heparin to the surface of the stent. These
drug-eluting stent A drug-eluting stent (DES) is a peripheral or coronary stent (a scaffold) placed into narrowed, diseased peripheral or coronary arteries that slowly release a drug to block cell proliferation. This prevents fibrosis that, together with clots ( ...
s show promise in further reducing thrombogenicity while not compromising corrosion resistance.


Welding

New advances with micro laser welding have vastly improved the quality of medical devices made with nitinol.


Remarks

Nitinol is an important alloy for use in medical devices, due to its exceptional biocompatibility, especially in the areas of corrosion resistance and thrombogenicity. Corrosion resistance is enhanced through methods that produce a uniform titanium dioxide layer on the surface with very few defects and impurities. Thrombogenicity is lowered on nitinol surfaces that contain nickel, so processes that retain nickel oxides in the surface layer are beneficial. The use of coatings has also been shown to greatly improve biocompatibility. Because implanted devices contact the surface of the material, surface science plays an integral role in research aimed at enhancing biocompatibility, and in the development of new biomaterials. The development and improvement of nitinol as an implant material, from characterizing and improving the oxide layer to developing coatings, has been based largely on surface science. Research is underway to produce better, more biocompatible, coatings. This research involves producing a coating that is very much like biologic material in order to further lessen the foreign body reaction.
Biocomposite A biocomposite is a composite material formed by a matrix (resin) and a reinforcement of natural fibers. Environmental concern and cost of synthetic fibres have led the foundation of using natural fibre as reinforcement in polymeric composites. ...
coatings containing cells or protein coatings are being explored for use with nitinol as well as many other biomaterials.Brassack, I. Bottcher, H. Hempel, U. "Biocompatibility of Modified Silica-Protein Composite Layers." '' Journal of Sol-Gel Science and Technology.'' December, 2000. Vol. 19, Issues 1-3.


Current research/further reading

* The
U.S. Food and Drug Administration The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food ...
lists recently approved stent technology on thei
Heart Health Online
site.
Angioplasty.org
contains information on current stent research, as well as other issues relating to the
circulatory system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
. Including: *
Drug-eluting Stents
*

in stent technology. ** Advancements i

* Use of biocomposites for medical applications: *
Orthopaedic
*
Dental
*
ISO ISO is the most common abbreviation for the International Organization for Standardization. ISO or Iso may also refer to: Business and finance * Iso (supermarket), a chain of Danish supermarkets incorporated into the SuperBest chain in 2007 * Iso ...
and FDA set standards for evaluating and determining biocompatibility
ISO 10993 Standards
"Biological Evaluation of Medical Devices"


References

{{reflist Nickel–titanium alloys Transplantation medicine Immunology