Nilpotent Minimum Logic
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an element x of a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the classification of algebras.


Examples

*This definition can be applied in particular to square matrices. The matrix :: A = \begin 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end :is nilpotent because A^3=0. See nilpotent matrix for more. * In the factor ring \Z/9\Z, the
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
of 3 is nilpotent because 32 is congruent to 0
modulo In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is t ...
9. * Assume that two elements a and b in a ring R satisfy ab=0. Then the element c=ba is nilpotent as \beginc^2&=(ba)^2\\ &=b(ab)a\\ &=0.\\ \end An example with matrices (for ''a'', ''b''):A = \begin 0 & 1\\ 0 & 1 \end, \;\; B =\begin 0 & 1\\ 0 & 0 \end. Here AB=0 and BA=B. *By definition, any element of a
nilsemigroup In mathematics, and more precisely in semigroup theory, a nilsemigroup or nilpotent semigroup is a semigroup whose every element is nilpotent. Definitions Formally, a semigroup ''S'' is a nilsemigroup if: *''S'' contains ''0'' and *for each eleme ...
is nilpotent.


Properties

No nilpotent element can be a unit (except in the trivial ring, which has only a single element ). All nilpotent elements are zero divisors. An n\times n matrix A with entries from a field is nilpotent if and only if its
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The chara ...
is t^n. If x is nilpotent, then 1-x is a unit, because x^n=0 entails (1 - x) (1 + x + x^2 + \cdots + x^) = 1 - x^n = 1. More generally, the sum of a unit element and a nilpotent element is a unit when they commute.


Commutative rings

The nilpotent elements from a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
R form an
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considere ...
\mathfrak; this is a consequence of the binomial theorem. This ideal is the nilradical of the ring. Every nilpotent element x in a commutative ring is contained in every
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with ...
\mathfrak of that ring, since x^n = 0\in \mathfrak. So \mathfrak is contained in the intersection of all prime ideals. If x is not nilpotent, we are able to localize with respect to the powers of x: S=\ to get a non-zero ring S^R. The prime ideals of the localized ring correspond exactly to those prime ideals \mathfrak of R with \mathfrak\cap S=\empty. As every non-zero commutative ring has a maximal ideal, which is prime, every non-nilpotent x is not contained in some prime ideal. Thus \mathfrak is exactly the intersection of all prime ideals. A characteristic similar to that of Jacobson radical and annihilation of simple modules is available for nilradical: nilpotent elements of ring R are precisely those that annihilate all integral domains internal to the ring R (that is, of the form R/I for prime ideals I). This follows from the fact that nilradical is the intersection of all prime ideals.


Nilpotent elements in Lie algebra

Let \mathfrak be a
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
. Then an element of \mathfrak is called nilpotent if it is in mathfrak, \mathfrak/math> and \operatorname x is a nilpotent transformation. See also: Jordan decomposition in a Lie algebra.


Nilpotency in physics

Any
ladder operator In linear algebra (and its application to quantum mechanics), a raising or lowering operator (collectively known as ladder operators) is an operator that increases or decreases the eigenvalue of another operator. In quantum mechanics, the raisin ...
in a finite dimensional space is nilpotent. They represent creation and annihilation operators, which transform from one state to another, for example the raising and lowering Pauli matrices \sigma_\pm=(\sigma_x\pm i \sigma_y)/2. An operand Q that satisfies Q^2=0 is nilpotent. Grassmann numbers which allow a path integral representation for Fermionic fields are nilpotents since their squares vanish. The
BRST charge In theoretical physics, the BRST formalism, or BRST quantization (where the ''BRST'' refers to the last names of Carlo Becchi, , Raymond Stora and Igor Tyutin) denotes a relatively rigorous mathematical approach to quantizing a field theory w ...
is an important example in physics. As linear operators form an associative algebra and thus a ring, this is a special case of the initial definition. More generally, in view of the above definitions, an operator Q is nilpotent if there is n\in\N such that Q^n=0 (the zero function). Thus, a linear map is nilpotent
iff In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicon ...
it has a nilpotent matrix in some basis. Another example for this is the
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
(again with n=2). Both are linked, also through
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories e ...
and Morse theory, as shown by Edward Witten in a celebrated article. The
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
of a plane wave without sources is nilpotent when it is expressed in terms of the algebra of physical space.Rowlands, P. ''Zero to Infinity: The Foundations of Physics'', London, World Scientific 2007, More generally, the technique of microadditivity (which can used to derive theorems in physics) makes use of nilpotent or nilsquare infinitesimals and is part
smooth infinitesimal analysis Smooth infinitesimal analysis is a modern reformulation of the calculus in terms of infinitesimals. Based on the ideas of F. W. Lawvere and employing the methods of category theory, it views all functions as being continuous and incapable of bein ...
.


Algebraic nilpotents

The two-dimensional dual numbers contain a nilpotent space. Other algebras and numbers that contain nilpotent spaces include split-quaternions (coquaternions),
split-octonion In mathematics, the split-octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signatures of their quadratic forms differ: t ...
s, biquaternions \mathbb C\otimes\mathbb H, and complex
octonions In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface or blackboard bold \mathbb O. Octonions have e ...
\mathbb C\otimes\mathbb O. If a nilpotent infinitesimal is a variable tending to zero, it can be shown that any sum of terms for which it is the subject is an indefinitely small proportion of the first order term.


See also

* Idempotent element (ring theory) * Unipotent * Reduced ring *
Nil ideal In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent., p. 194 The nilradical of a commutative ring is an example of a nil ideal; in fact, it is ...


References

{{Reflist Ring theory 0 (number) Algebraic properties of elements