Nildimensional Space
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a zero-dimensional topological space (or nildimensional space) is a
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
that has dimension zero with respect to one of several inequivalent notions of assigning a
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
to a given topological space. A graphical illustration of a nildimensional space is a
point Point or points may refer to: Places * Point, Lewis, a peninsula in the Outer Hebrides, Scotland * Point, Texas, a city in Rains County, Texas, United States * Point, the NE tip and a ferry terminal of Lismore, Inner Hebrides, Scotland * Point ...
.


Definition

Specifically: * A topological space is zero-dimensional with respect to the Lebesgue covering dimension if every
open cover In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\s ...
of the space has a
refinement Refinement may refer to: Mathematics * Equilibrium refinement, the identification of actualized equilibria in game theory * Refinement of an equivalence relation, in mathematics ** Refinement (topology), the refinement of an open cover in mathem ...
which is a cover by disjoint open sets. * A topological space is zero-dimensional with respect to the finite-to-finite covering dimension if every finite open cover of the space has a refinement that is a finite open cover such that any point in the space is contained in exactly one open set of this refinement. * A topological space is zero-dimensional with respect to the
small inductive dimension In the mathematical field of topology, the inductive dimension of a topological space ''X'' is either of two values, the small inductive dimension ind(''X'') or the large inductive dimension Ind(''X''). These are based on the observation that, in ...
if it has a base consisting of clopen sets. The three notions above agree for separable, metrisable spaces.


Properties of spaces with small inductive dimension zero

* A zero-dimensional
Hausdorff space In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many ...
is necessarily
totally disconnected In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) ...
, but the converse fails. However, a
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
Hausdorff space is zero-dimensional if and only if it is totally disconnected. (See for the non-trivial direction.) * Zero-dimensional Polish spaces are a particularly convenient setting for
descriptive set theory In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to ot ...
. Examples of such spaces include the Cantor space and Baire space. * Hausdorff zero-dimensional spaces are precisely the subspaces of topological
powers Powers may refer to: Arts and media * ''Powers'' (comics), a comic book series by Brian Michael Bendis and Michael Avon Oeming ** ''Powers'' (American TV series), a 2015–2016 series based on the comics * ''Powers'' (British TV series), a 200 ...
2^I where 2=\ is given the discrete topology. Such a space is sometimes called a Cantor cube. If is
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
, 2^I is the Cantor space.


Hypersphere

The zero-dimensional hypersphere is a pair of points. The zero-dimensional
ball A ball is a round object (usually spherical, but can sometimes be ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used f ...
is a point.


Notes

* * *


References

{{Dimension topics Dimension 0 Descriptive set theory Properties of topological spaces Space, topological