HOME

TheInfoList



OR:

A neutron monitor is a ground-based
detector A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
designed to measure the number of high-energy charged
particle In the Outline of physical science, physical sciences, a particle (or corpuscule in older texts) is a small wikt:local, localized physical body, object which can be described by several physical property, physical or chemical property, chemical ...
s striking the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
from
outer space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, pred ...
. For historical reasons the incoming particles are called "
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s", but in fact they are particles, predominantly
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
and
Helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
nuclei. Most of the time, a neutron monitor records
galactic cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s and their variation with the 11-year sunspot cycle and 22-year magnetic cycle. Occasionally the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
emits cosmic rays of sufficient energy and intensity to raise radiation levels on Earth's surface to the degree that they are readily detected by neutron monitors. They are termed "
ground level enhancement A Ground Level Enhancement or Ground Level Event (GLE), is a special subset of solar particle event where charged particles from the Sun have sufficient energy to generate effects which can be measured at the Earth's surface. These particles (most ...
s" (GLE). The neutron monitor was invented by
University of Chicago The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park neighborhood. The University of Chicago is consistently ranked among the b ...
Professor John A. Simpson in 1948. The "18-tube" NM64 monitor, which today is the international standard, is a large instrument weighing about 36 tons.


How it works


Atmospheric cascades

When a high-energy particle from outer space ("primary" cosmic ray) encounters Earth, its first interaction is usually with an air molecule at an altitude of 30 km or so. This encounter causes the air molecule to split into smaller pieces, each having high energy. The smaller pieces are called "secondary" cosmic rays, and they in turn hit other air molecules resulting in more secondary cosmic rays. The process continues and is termed an "atmospheric cascade". If the primary cosmic ray that started the cascade has energy over 500 MeV, some of its secondary byproducts (including
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s) will reach ground level where they can be detected by neutron monitors.


Measurement strategy

Since they were invented by Prof. Simpson in 1948 there have been various types of neutron monitors. Notable are the "IGY-type" monitors deployed around the world during the 1957
International Geophysical Year The International Geophysical Year (IGY; french: Année géophysique internationale) was an international scientific project that lasted from 1 July 1957 to 31 December 1958. It marked the end of a long period during the Cold War when scientific ...
(IGY) and the much larger "NM64" monitors (also known as "supermonitors"). All neutron monitors however employ the same measurement strategy that exploits the dramatic difference in the way high and low energy neutrons interact with different nuclei. (There is almost no interaction between
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s and
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s.) High energy neutrons interact rarely but when they do they are able to disrupt nuclei, particularly heavy nuclei, producing many low energy neutrons in the process. Low energy neutrons have a much higher probability of interacting with nuclei, but these interactions are typically
elastic Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects togeth ...
(like
billiard ball A billiard ball is a small, hard ball used in cue sports, such as carom billiards, pool, and snooker. The number, type, diameter, color, and pattern of the balls differ depending upon the specific game being played. Various particular ball p ...
collisions) that transfer energy but do not change the structure of the nucleus. The exceptions to this are a few specific nuclei (most notably 10B and 3He) that quickly absorb extremely low energy neutrons, then disintegrate releasing very energetic charged particles. With this behavior of neutron interactions in mind, Professor Simpson ingeniously selected the four main components of a neutron monitor: # Reflector. An outer shell of proton-rich material –
paraffin Paraffin may refer to: Substances * Paraffin wax, a white or colorless soft solid that is used as a lubricant and for other applications * Liquid paraffin (drug), a very highly refined mineral oil used in cosmetics and for medical purposes * Alkan ...
in the early neutron monitors,
polyethylene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging ( plastic bags, plastic films, geomembranes and containers including bo ...
in the more modern ones. Low energy neutrons cannot penetrate this material, but are not absorbed by it. Thus environmental, non-cosmic ray induced neutrons are kept out of the monitor and low energy neutrons generated in the lead are kept in. This material is largely transparent to the cosmic ray induced cascade neutrons. # Producer. The producer is
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
, and by weight it is the major component of a neutron monitor. Fast neutrons that get through the reflector interact with the lead to produce, on average about 10 much lower energy neutrons. This both amplifies the cosmic signal and produces neutrons that cannot easily escape the reflector. # Moderator. The moderator, also a proton rich material like the reflector, slows down the neutrons now confined within the reflector, which makes them more likely to be detected. # Proportional Counter. This is the heart of a neutron monitor. After very slow neutrons are generated by the reflector, producer, moderator, and so forth, they encounter a nucleus in the
proportional counter The proportional counter is a type of gaseous ionization detector device used to measure particles of ionizing radiation. The key feature is its ability to measure the energy of incident radiation, by producing a detector output pulse that is ''prop ...
and cause it to disintegrate. This
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
produces energetic charged particles that ionize gas in the proportional counter, producing an electrical signal. In the early Simpson monitors, the active component in the gas was 10B, which produced a signal via the reaction (n + 10B → α + 7Li). Recent proportional counters use the reaction (n + 3He → 3H + p) which yields 764 keV.


What it measures

Neutron monitors measure by proxy the intensity of cosmic rays striking the Earth, and its variation with time. These variations occur on many different time scales (and are still a subject of research). The three listed below are examples:


Solar cycles

In a process termed “solar modulation” the Sun and
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sola ...
alter the intensity and energy spectrum of Galactic cosmic rays that enter the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. When the Sun is active, fewer Galactic cosmic rays reach Earth than during times when the Sun is quiet. For this reason, Galactic cosmic rays follow an 11-year cycle like the Sun, but in the opposite direction: High solar activity corresponds to low cosmic rays, and vice versa.


Long-term stability

The main advantage of the neutron monitor is its long-term stability making them suitable for studied of cosmic-ray variability through decades . The most stable long-running neutron monitors are: Oulu, Inuvik, Moscow, Kerguelen, Apatity and Newark neutron monitors.


Forbush decreases

Occasionally the Sun expels an enormous quantity of mass and energy in a "
Coronal Mass Ejection A coronal mass ejection (CME) is a significant release of plasma and accompanying magnetic field from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted ...
" (CME). As this matter moves through the solar system, it suppresses the intensity of Galactic cosmic rays. The suppression was first reported by
Scott Forbush Scott Ellsworth Forbush (April 10, 1904 – April 4, 1984) was an American astronomer, physicist and geophysicist who is recognized as having laid the observational foundations for many of the central features of solar-interplanetary-terrestria ...
and hence is termed a "
Forbush decrease A Forbush decrease is a rapid decrease in the observed galactic cosmic ray intensity following a coronal mass ejection (CME). It occurs due to the magnetic field of the plasma solar wind sweeping some of the galactic cosmic rays away from Earth. ...
".


Ground level enhancements

Approximately 10-15 times per decade, the Sun emits particles of sufficient energy and intensity to raise radiation levels on Earth's surface. The official list of GLEs is kept by the International GLE database. The largest of these events, termed a "ground level enhancement" (GLE) was observed on February 23, 1956. The most recent GLE, (#72) occurred on September 10, 2017 as a result of an X-class flare and was measured on the surface of both the Earth (by Neutron Monitors) and Mars (by the
Radiation Assessment Detector The Radiation Assessment Detector (RAD) is an instrument mounted on the Mars Science Laboratory ''Curiosity'' rover. It was the first of ten instruments to be turned on during the mission. Purpose The first role of RAD was to characterize the b ...
on the
Mars Science Laboratory Mars Science Laboratory (MSL) is a robotic spacecraft, robotic space probe mission to Mars launched by NASA on November 26, 2011, which successfully landed ''Curiosity (rover), Curiosity'', a Mars rover, in Gale (crater), Gale Crater on August ...
's
Curiosity Rover ''Curiosity'' is a car-sized Mars rover designed to explore the Gale crater on Mars as part of NASA's Mars Science Laboratory (MSL) mission. ''Curiosity'' was launched from Cape Canaveral (CCAFS) on November 26, 2011, at 15:02:00 UTC and lan ...
).


Neutron monitor arrays

In the early days of neutron monitoring, discoveries could be made with a monitor at a single location. However, the scientific yield of neutron monitors is greatly enhanced when data from numerous monitors are analyzed in concert. Modern applications frequently employ extensive arrays of monitors. In effect the observing instrument is not any isolated instrument, but rather the array.
NMDB The Real-time Neutron Monitor Database (or NMDB) is a worldwide network of standardized neutron monitors, used to record variations of the primary cosmic rays. The measurements complement space-based cosmic ray measurements. Unlike data from satell ...
(Real-time Neutron Monitor DataBase) gives access to the largest network of stations worldwide (more than 50 stations) through its interfac
NEST
Networking neutron monitors yields new information in several areas, among them: # Anisotropy: Neutron monitor stations at different locations around the globe view different directions in space. By combining data from these stations, the anisotropy of cosmic rays can be determined. # Energy Spectrum: Earth’s magnetic field repels cosmic rays more strongly in equatorial regions than in polar regions. By comparing data from stations located at different latitudes, the energy spectrum can be determined. # Relativistic Solar Neutrons: These are very rare events recorded by stations near Earth’s equator that face the Sun. The information they provide is unique because neutrally charged particles (like neutrons) travel through space unaffected by magnetic fields in space. A relativistic solar neutron event was first reported for a 1982 event.


References

{{reflist Cosmic-ray experiments