The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is a
scientific instrument
A scientific instrument is a device or tool used for scientific purposes, including the study of both natural phenomena and theoretical research.
History
Historically, the definition of a scientific instrument has varied, based on usage, laws, an ...
for
infrared astronomy
Infrared astronomy is a sub-discipline of astronomy which specializes in the astronomical observation, observation and analysis of astronomical objects using infrared (IR) radiation. The wavelength of infrared light ranges from 0.75 to 300 microm ...
, installed on the
Hubble Space Telescope
The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
(HST), operating from 1997 to 1999, and from 2002 to 2008. Images produced by NICMOS contain data from the near-infrared part of the light spectrum.
NICMOS was conceived and designed by the NICMOS Instrument Definition Team centered at
Steward Observatory
Steward Observatory is the research arm of the Department of Astronomy at the University of Arizona (UArizona). Its offices are located on the UArizona campus in Tucson, Arizona (US). Established in 1916, the first telescope and building were ...
,
University of Arizona
The University of Arizona (Arizona, U of A, UArizona, or UA) is a Public university, public Land-grant university, land-grant research university in Tucson, Arizona, United States. Founded in 1885 by the 13th Arizona Territorial Legislature, it ...
, USA. NICMOS is an imager and
multi-object spectrometer built by
Ball Aerospace & Technologies Corp. that allows the HST to observe
infrared light
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those o ...
, with
wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
s between 0.8 and 2.4 micrometers, providing imaging and slitless spectrophotometric capabilities. NICMOS contains three near-infrared detectors in three optical channels providing high (~ 0.1 arcsecond) resolution, coronagraphic and polarimetric imaging, and slitless spectroscopy in 11-, 19-, and 52-arcsecond square fields of view. Each optical channel contains a 256×256 pixel
photodiode
A photodiode is a semiconductor diode sensitive to photon radiation, such as visible light, infrared or ultraviolet radiation, X-rays and gamma rays. It produces an electrical current when it absorbs photons. This can be used for detection and me ...
array of
mercury cadmium telluride infrared detector
An infrared detector is a detector that reacts to infrared (IR) radiation. The two main types of detectors are thermal and photonic (photodetectors).
The thermal effects of the incident IR radiation can be followed through many temperature depe ...
s bonded to a sapphire substrate, read out in four independent 128×128 quadrants.
NICMOS last worked in 2008, and has been largely replaced by the infrared channel of
Wide Field Camera 3 after its installation in 2009.
Limitations
The infrared performance of the Hubble has limitations since it was not designed with infrared performance as an objective. For example, the mirror is kept at a stable and relatively high temperature (15 °C) by heaters.
HST is a warm telescope. The IR background flux collected by cooled focal plane IR instruments like NICMOS or WFC3 is dominated, at rather short wavelengths, by telescope thermal emission rather than by zodiacal scattering. NICMOS data show that the telescope background exceeds the zodiacal background at wavelengths longer than λ ≈ 1.6μm, the exact value depending on the pointing on the sky and on the position of the Earth on its orbit.
Despite this, the combination of Hubble's mirror and NICMOS offered never-before seen levels of quality in near-infrared performance at that time.
Dedicated infrared telescopes like the
Infrared Space Observatory were ground-breaking in their own way, but had a smaller primary mirror, and were also out of service at the time of NICMOS installation because they ran out of coolant. NICMOS later overcame this problem by using a machine chiller like a refrigerator, which allowed it operate for years until it went offline in 2008.
History of NICMOS
NICMOS was installed on Hubble during its second servicing mission in 1997 (
STS-82
STS-82 was the 22nd flight of the Space Shuttle Space Shuttle Discovery, ''Discovery'' and the 82nd mission of the Space Shuttle program. It was NASA's second mission to service the Hubble Space Telescope, during which ''Discovery's'' crew repai ...
) along with the
Space Telescope Imaging Spectrograph
The Space Telescope Imaging Spectrograph (STIS) is a spectrograph, also with a camera mode, installed on the Hubble Space Telescope. Aerospace engineer Bruce Woodgate of the Goddard Space Flight Center was the principal investigator and creator ...
, replacing two earlier instruments. NICMOS in turn has been largely superseded by the
Wide Field Camera 3, which has a much larger field of view (135 by 127 arcsec, or 2.3 by 2.1 arcminutes), and reaches almost as far into the infrared.

When conducting infrared measurements, it is necessary to keep the infrared detectors cooled to avoid having infrared interference from the instrument's own thermal emissions. NICMOS contains a cryogenic
dewar, that cooled its detectors to about 61 K, and optical filters to ~ 105 K, with a block of
solid nitrogen
Solid nitrogen is a number of solid forms of the element nitrogen, first observed in 1884. Solid nitrogen is mainly the subject of academic research, but low-temperature, low-pressure solid nitrogen is a substantial component of bodies in the ou ...
ice. When NICMOS was installed in 1997, the
dewar flask contained a 230-pound (104 kg) block of nitrogen ice. Due to a thermal short that arose on March 4, 1997, during the instrument commissioning, the dewar ran out of
nitrogen
Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
coolant sooner than expected in January 1999.
During Hubble Service Mission 3B in 2002 (
STS-109),
a replacement cooling system comprising a
cryocooler
A cryocooler is a refrigerator designed to reach cryogenic temperatures (below 120 K, -153 °C, -243.4 °F). The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have inpu ...
, cryogenic circulator, and external radiator was installed on the Hubble that now cools NICMOS through a cryogenic
neon
Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
loop. The NICMOS Cooling System (NCS) was developed on a very accelerated schedule (14 months vs. 5–10 years for other Hubble instrument hardware). NICMOS was returned to service soon after SM 3B.
A new software upload in September 2008 necessitated a brief shutdown of the NICMOS cooling system. Several attempts to restart the cooling system were unsuccessful due to issues with the cryogenic circulator. After waiting more than six weeks for parts of the instrument to warm up, and theorized ice particles to sublimate from the neon circulating loop, the cooler once again failed to restart. An Anomaly Review Board (ARB) was then convened by NASA. The ARB concluded that ice or other solid particle migrated from the dewar to the circulator during the September 2008 restart attempt and that the circulator may be damaged, and determined an alternative set of startup parameters. A successful restart at 13:30 EST on 16 December 2008 led to four days of cooler operations followed by another shutdown. On 1 August 2009, the cooler was restarted again; NICMOS was expected to resume operations in mid-February 2010 and operated through October 22, 2009, at which point a lock-up of Hubble's data handling system caused the telescope to shut down. The circulation flow rate to NICMOS was greatly reduced during this operating period confirming blockage in the circulation loop. Continued operation at reduced flow rates would limit NICMOS science so plans for purging and refilling the circulation system with clean neon gas were developed by NASA. The circulation loop is equipped with an extra neon tank and remotely operated solenoid valves for on-orbit purge-fill operations. As of 2013, these purge-fill operations have not yet been performed.
WFC3, installed 2009, was designed to partly replace NICMOS.
On June 18, 2010, it was announced NICMOS would not be available for science during the latest proposal Cycle 18. As of 2013, a decision as to whether the purge-fill operations will be performed and whether NICMOS will be available for science in the future has not been made.
NICMOS is also the name of the device's 256×256-pixel imaging sensor built by Rockwell International Electro-Optical Center (now DRS Technologies).
Scientific results
NICMOS was noted for its performance in Near-infrared space astronomy, in particular its ability to see objects through dust.
It was used for about 23 months after it was installed, its life limited by set amount of cryo-coolant, and then later it was used for several years when a new cryo-cooler was installed in 2002.
NICMOS combined near infrared performance with a large mirror.
NICMOS allowed investigation of high
redshift
In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and e ...
galaxies and
quasar
A quasar ( ) is an extremely Luminosity, luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass rangi ...
s with high spatial resolution, which was especially useful when analyzed in conjunction with other instruments such as the STIS, and it also allowed deeper investigation of stellar populations. In planetary science, NICMOS was used to discover an impact basin on the south pole of the asteroid
4 Vesta
Vesta (minor-planet designation: 4 Vesta) is one of the largest objects in the asteroid belt, with a mean diameter of . It was discovered by the German astronomer Heinrich Wilhelm Matthias Olbers on 29 March 1807 and is named after Vesta (mytho ...
. (4 Vesta was later visited by
Dawn (spacecraft)
''Dawn'' is a retired space probe that was launched by NASA in September 2007 with the mission of studying two of the three known protoplanets of the asteroid belt: Vesta and Ceres. In the fulfillment of that mission—the ninth in NASA's Di ...
in the 2010s which investigated it more closely by orbiting it.)
In 2009, an old NICMOS image was processed to show a predicted
exoplanet
An exoplanet or extrasolar planet is a planet outside the Solar System. The first confirmed detection of an exoplanet was in 1992 around a pulsar, and the first detection around a main-sequence star was in 1995. A different planet, first det ...
around the star
HR 8799
HR 8799 is a roughly 30 million-year-old main sequence, main-sequence star located away from Earth in the constellation of Pegasus (constellation), Pegasus. It has roughly 1.5 times the Sun's mass and 4.9 times its lumino ...
.
[ The system is thought to be about 130 light-years from Earth.][
In 2011, around that same star, four exoplanets were rendered viewable in a NICMOS image taken in 1998, using advanced data processing.][NASA - Astronomers Find Elusive Planets in Decade-Old Hubble Data - 10.06.11]
/ref> The exoplanets were originally discovered with the Keck telescopes and the Gemini North telescope between 2007 and 2010.[ The image allows the orbits of the exoplanets to be analyzed more closely, since they take many decades, even hundreds of Earth years, to orbit their host star.][
NICMOS observed the exoplanet XO-2b at star XO-2, and a spectroscopy result was obtained for this exoplanet in 2012.] This uses the spectroscopic abilities of the instrument, and in astronomy spectroscopy during a planetary transit (an exoplanet passes in front of star from the perspective of Earth) is a way to study that exoplanet's possible atmosphere.
In 2014, researchers recovered planetary discs in old NICMOS data using new image processing techniques.
Shuttle missions
*STS-82, (year:1997) installed, NICMOS replaces GHRS
*STS-109, (year:2002) new crycooler installed, returned to operation.
See also
*James Webb Space Telescope
The James Webb Space Telescope (JWST) is a space telescope designed to conduct infrared astronomy. As the largest telescope in space, it is equipped with high-resolution and high-sensitivity instruments, allowing it to view objects too old, Lis ...
(dedicated near-infrared telescope)
* List of largest infrared telescopes
* NICMOSlook
* Herschel Space Telescope (deep infrared space telescope 2009–2013)
* Infrared Array Camera (Spitzer near to mid infrared camera)
References
External links
NICMOS at ESA/Hubble
Images taken with NICMOS at ESA/Hubble
from Steward Observatory
Steward Observatory is the research arm of the Department of Astronomy at the University of Arizona (UArizona). Its offices are located on the UArizona campus in Tucson, Arizona (US). Established in 1916, the first telescope and building were ...
's instrument team
NICMOS sensor family
{{Hubble Space Telescope
Hubble Space Telescope instruments
Space science experiments
Spectrometers
Infrared imaging