Like
logic programming
Logic programming is a programming paradigm which is largely based on formal logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of log ...
, narrowing of algebraic value sets gives a method of reasoning about the values in unsolved or partially solved equations. Where logic programming relies on
resolution
Resolution(s) may refer to:
Common meanings
* Resolution (debate), the statement which is debated in policy debate
* Resolution (law), a written motion adopted by a deliberative body
* New Year's resolution, a commitment that an individual ma ...
, the algebra of value sets relies on narrowing rules. Narrowing rules allow the elimination of values from a solution set which are inconsistent with the equations being solved.
Unlike logic programming, narrowing of algebraic value sets makes no use of
backtracking
Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it de ...
. Instead all values are contained in value sets, and are considered in parallel.
The approach is also similar to the use of
constraints[
] in
constraint logic programming
Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clau ...
, but without the logic processing basis.
Probabilistic value sets is a natural extension of value sets to
deductive probability. The value set construct holds the information required to calculate probabilities of calculated values based on probabilities of initial values.
History
Early programming languages were
imperative. These implement functionality by allowing change to be represented. The assignment statement allows a variable to change its value.
In mathematics a variable's value may not change. This is fundamental to the mathematical approach.
Functional
Functional may refer to:
* Movements in architecture:
** Functionalism (architecture)
** Form follows function
* Functional group, combination of atoms within molecules
* Medical conditions without currently visible organic basis:
** Functional s ...
languages based on
lambda calculus
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation t ...
allow this mathematical approach to programming. Functional languages developed by implementing
lazy evaluation
In programming language theory, lazy evaluation, or call-by-need, is an evaluation strategy which delays the evaluation of an expression until its value is needed ( non-strict evaluation) and which also avoids repeated evaluations ( sharing).
T ...
, and allowing functions to be passed as parameters.
Lazy evaluation is an essential feature of modern
functional programming
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that ...
languages such as
Haskell
Haskell () is a general-purpose, statically-typed, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research and industrial applications, Haskell has pioneered a number of programming lan ...
. Haskell is the latest in a series of languages based on
lambda calculus
Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation t ...
and
let expression
In computer science, a "let" expression associates a function definition with a restricted scope.
The "let" expression may also be defined in mathematics, where it associates a Boolean condition with a restricted scope.
The "let" expression may ...
s. These languages provide rich functionality through lazy evaluation, and a
polymorphic type system using
type inference
Type inference refers to the automatic detection of the type of an expression in a formal language. These include programming languages and mathematical type systems, but also natural languages in some branches of computer science and linguistics. ...
. Functional programming languages also naturally support
higher-order function
In mathematics and computer science, a higher-order function (HOF) is a function that does at least one of the following:
* takes one or more functions as arguments (i.e. a procedural parameter, which is a parameter of a procedure that is itse ...
s.
Logic programming
Logic programming is a programming paradigm which is largely based on formal logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of log ...
based on
Resolution
Resolution(s) may refer to:
Common meanings
* Resolution (debate), the statement which is debated in policy debate
* Resolution (law), a written motion adopted by a deliberative body
* New Year's resolution, a commitment that an individual ma ...
developed alongside functional programming. Logic programming is a form of
relational programming
Logic programming is a programming paradigm which is largely based on formal logic. Any program written in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic pro ...
that makes deductions about values.
Constraint logic programming
Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clau ...
extends logic programming, by supporting
constraints. Constraint logic programming languages such as
ECLiPSe
An eclipse is an astronomical event that occurs when an astronomical object or spacecraft is temporarily obscured, by passing into the shadow of another body or by having another body pass between it and the viewer. This alignment of three ce ...
provide the ability to solve complex logic problems. However ECLiPSe is not
lazy.
Logic programming languages, although they have greater deduction abilities, never gained the power and flexibility of functional languages.
Narrowing is a technique that allows logical deduction, with the flexibility of functional languages.
Introduction
In
mathematics an expression represents a single value. A
function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-orie ...
maps one or more values to one unique value.
Inverses of functions are not always well defined as functions. Sometimes extra conditions are required to make an inverse of a function fit the definition of a function.
Some Boolean operations, in particular do not have inverses that may be defined as functions. In particular the
disjunction
In logic, disjunction is a logical connective typically notated as \lor and read aloud as "or". For instance, the English language sentence "it is raining or it is snowing" can be represented in logic using the disjunctive formula R \lor ...
"or" has inverses that allow two values. In natural language "or" represents alternate possibilities.
Narrowing is based on value sets that allow multiple values to be packaged and considered as a single value. This allows the inverses of functions to always be considered as functions.
To achieve this value sets must record the context to which a value belongs. A variable may only take on a single value in each
possible world
A possible world is a complete and consistent way the world is or could have been. Possible worlds are widely used as a formal device in logic, philosophy, and linguistics in order to provide a semantics for intensional and modal logic. Their ...
. The value sets tag each value in the value set with the world to which it belongs.
Possible worlds belong to world sets. A world set is a set of all mutually exclusive worlds. Combining values from different possible worlds is impossible, because that would mean combining mutually exclusive possible worlds.
The application of functions to value sets creates combinations of value sets from different worlds. Narrowing reduces those worlds by eliminating combinations of different worlds from the same world set. Narrowing rules also detect situations where some combinations of worlds are shown to be impossible.
No back tracking is required in the use of narrowing. By packaging the possible values in a value set all combinations of values may be considered at the same time. Evaluation proceeds as for a functional language, combining combinations of values in value sets, with narrowing rules eliminating impossible values from the sets.
Introduction to value sets
A ''value set'' is an object, which represents the set of values a variable may have. The value set behaves mathematically as a single value, while internally representing multiple values. To achieve this the value set tracks the value along with the context, or world, in which they occurred.
Multiple solutions to an equation
In mathematics, an expression must represent a single value. For example consider the equation,
:
which implies,
:
But this is a bit long winded, and it does not allow us to work with multiple values at the same time. If further conditions or constraints are added to x we would like to consider each value to see if it matches the constraint. So naively we would like to write,
:
Naively then,
:
but this is wrong. Each x must represent a single value in the expression. Either x is 2 or x = −2. This can be resolved by keeping track of the two values so that we make sure that the values are used consistently, and this is what a value set does.
Representation
The value set for 'x' is written as,
:
It is container ''V'' which has a set of tag, value pairs,
*
*
The value 2 is associated with the
possible world
A possible world is a complete and consistent way the world is or could have been. Possible worlds are widely used as a formal device in logic, philosophy, and linguistics in order to provide a semantics for intensional and modal logic. Their ...
. The value −2 is associated with the possible world
. This means that the value cannot be both 2 and −2 at the same time. In the world
the value of the value set must be 2. In the world
the value of the value set must be −2.
The solution of the equation,
:
is,
:
Possible worlds
A possible world is used here as an informal term. Formally a possible world is defined by a Boolean condition. A possible world may be considered the set of possibilities for the world that match the condition.
The term "possible world" is used to make the description of value sets easier to follow.
World sets
A world set is a set of possible worlds that represent all possibilities. So
is a world set as either x = 2 (in world
) or x= −2 (in world
). There are no other possibilities.
Worlds from the same world set are mutually exclusive, so it is not possible that the propositions for both worlds
and
are true at the same time.
:
Application of functions
The rule for the application of functions to value sets is,
:
For example,
:
is,
:
:
The intersection of the possible world with itself is the possible world,
:
:
The intersection of the possible world with another possible world from the same world set is empty,
:
:
So,
:
The empty worlds rule allows tagged values from empty worlds to be dropped
:
giving,
:
Giving the result that
is either −4 or 4, as expected.
Application to Booleans
:
Is a relationship between ''a'', ''b'' and ''true'' that implies that both ''a'' and ''b'' must be true.
:
Allows multiple values for ''a'' and ''b''. If ''a'' is,
:
then for ''b''
:
This means that if ''a'' is ''false'' then ''b'' must be ''true''.
Now consider,
:
gives,
:
and
:
unifying these two value sets gives,
:
The pair
is dropped because of the "assert equal" rule,
:
Its value
did not match with
.
Dependent worlds
Consider the problem,
:
:
:
:
Firstly calculate the value set for
,
:
:
:
As this statement is asserted true, all the false values are dropped giving,
:
The worlds,
:
:
:
are impossible. The worlds are empty.
If a world set is included in a calculation then every world from the world set must be included in the result. If a world is not found, it is called a dependent world, and must be empty. The world
is not represented in this value, and so must be empty. The value set for
is now smaller,
:
The second condition is now simpler, because of the smaller value set.
:
Then the value sets are,
:
:
And the calculation is,
:
But
is empty. So,
:
So
and
are empty,
:
Now
and
are not represented, and are removed as dependent worlds. So,
:
:
Every calculation made may reduce the size of value sets by removing dependent worlds, but add a new value set whose size is the product of the sizes of the input value sets. Then calculations should proceed first where the product of the sizes of the input value sets is smallest.
Pizza, beer, whiskey
After a hard day's work attempting to meet some crazy deadline with the project from hell, there comes that desperate time at 10 PM when we all need pizza, beer, and whiskey. Pizza shops are open at,
:
Beer you can get at,
:
Whiskey,
:
The cops are about and we are not getting any younger. Where to go?
:
If the constraints are applied in the order left to right,
:
Then we need to unify this with,
:
This will create 24 combinations from which the matching ones are,
:
Finally we need to unify with whiskey.
:
Which gives 6 combinations. The matching one is,
:
A total of 30 combinations were generated.
If the constraints are applied in the order right to left,
:
Then we need to unify this with,
:
This will create 8 combinations from which the matching one is,
:
Finally we need to unify with pizza.
:
Which gives 6 combinations. The matching one is,
:
The result is the same but only 14 combinations were generated to arrive at the conclusion.
Every calculation combines value sets to create a value set which is the product of the sizes of the input value sets. The value set will then be trimmed down. And every calculation has an equal chance of narrowing the calculation. So by controlling the order and proceeding with calculations with the smallest product of sizes, there will be less calculation and less
combinatorial explosion
In mathematics, a combinatorial explosion is the rapid growth of the complexity of a problem due to how the combinatorics of the problem is affected by the input, constraints, and bounds of the problem. Combinatorial explosion is sometimes used to ...
.
Let expressions and multiple values
A general solution to the problem of inverses of functions that are not functions is needed. What is required is a representation of a value that is constrained to be a member of a set of values. A
let expression
In computer science, a "let" expression associates a function definition with a restricted scope.
The "let" expression may also be defined in mathematics, where it associates a Boolean condition with a restricted scope.
The "let" expression may ...
may be used to represent a value that is a member of a set,
:
In this expression
is a constraint. A constraint is a Boolean expression that a variable must satisfy. The ''let'' expression allows the constraint be represented in an expression. If there was a general rule for function application of constraint expressions, then a constraint could be treated like a value.
Under function application, of one let expression to another,
:
:
:
But a different rule applies for applying the let expression to itself. The let expression does not restrict the scope of the variable x, so x is the same variable in the two let expressions.
:
:
There appears no simple rule for combining let expressions. What is required is a general form of expression that represents a variable whose value is a member of a set of values. The expression should be based on the variable and the set.
Function application applied to this form should give another expression in the same form. In this way any expression on functions of multiple values may be treated as if it had one value.
It is not sufficient for the form to represent only the set of values. Each value must have a condition that determines when the expression takes the value. The resulting construct is a set of pairs of conditions and values, called a "value set".
Theory of value sets
A "value set" ''K'' is defined as a set of pairs, each pair consisting of a value and a set of dependent conditions. The set of dependent conditions is used by the "condition function", to determine if the value set takes that value.
The condition function is defined by 3 axioms,
# Each pair
means that the value of the value set
is ''v'' if the condition function applied to the list,
, is true.
# One of the conditions is true.
# Only one of the conditions is true.
The condition is represented as a function applied to a set of dependent conditions, to allow the structure of the condition to be controlled. Also the set of conditions is used in
narrowing by exclusion of dependent values
Narrowing may refer to:
*Narrowing (computer science), a type of algorithm for solving equations between symbolic expressions
**Narrowing of algebraic value sets, a method for the elimination of values from a solution set which are inconsistent wit ...
. However for most purposes the value set may be thought of as a set of value, condition pairs. The condition function translates the set into the condition.
Formally,
Value function
Using the value condition and complete set axioms,
:
As a let expression this becomes,
:
Single value
The value set to represent a single value is,
:
The derivation is,
:
:
:
:
:
Element of a set
The value set to represent an element of a set is,
:
This rather strange definition adds the value set in as part of the dependent condition. This is used in
narrowing by exclusion of dependent values
Narrowing may refer to:
*Narrowing (computer science), a type of algorithm for solving equations between symbolic expressions
**Narrowing of algebraic value sets, a method for the elimination of values from a solution set which are inconsistent wit ...
.
The value of the expression is
:
.
Both ''R'' and ''x'' must be included in the dependent condition, because ''R'' identifies the value set to which the dependent condition belongs, and ''x'' provides the variable used to carry the value in the let expression.
If the addition of ''R'' to the dependent condition is ignored, the expression takes on a simpler and more understandable form,
:
The derivation is,
:
:
:
:
:
:
Application of functions
Function application of value sets is given by,
:
Derivation,
:
:
:
Then using,
:
:
:
:
get,
:
:
:
Exclusion
The exclusion is a rule that determines when conditions must be false,
:
This may be derived from,
:
:
:
:
Simplification
The simplification rule allows values whose condition is false to be dropped.
:
Derivation
:
:
:
:
:
Summary of results
{, class="wikitable"
, -
! Name !! Rule
, -
, Value function , ,
, -
, Single value , ,
, -
, Set element, ,
, -
, Function application , ,
, -
, Exclusion , ,
, -
, Simplification , ,
, -
, Assert equal , ,
A value sets identity
By defining the
application of functions
Application may refer to:
Mathematics and computing
* Application software, computer software designed to help the user to perform specific tasks
** Application layer, an abstraction layer that specifies protocols and interface methods used in a c ...
to value sets the definition of equality of value sets has also been redefined. The old definition of equality still exists, because value sets are constructed as a set of pairs. Two sets are equal if they contain the same elements. This definition of equality for value sets is at best misleading.
What is needed is to use the name, or identity of the variable from which the value set is constructed as part of the structure of the value set. This would make value sets distinct, unless they are based on the same variable.
In mathematics, quantification is over values, not formulas. To proceed further with the exact definition of value sets, quantification over formulas is needed, in a way that allows the comparison of the identity of formulas. The distinction between the formula representing a value and the identity of the formula is the
use–mention distinction
The use–mention distinction is a foundational concept of analytic philosophy, according to which it is necessary to make a distinction between a word (or phrase) and it.Devitt and Sterelny (1999) pp. 40–1W.V. Quine (1940) p. 24 Many philos ...
. The notation,
:
is introduced to mean quantification over formula ''x'' where ''x'' refers to the value, as a use, and ''u'' refers to the identity of the formula as represented or mentioned.
Using this notation the
element of a set definition would be,
:
Every reference to a value set would then need to be changed to take account of the extra level of structure in the value set, which would make the description harder to read. For the sake of readability this extra level of structure has been omitted from the definition of value sets.
Narrowing
"Narrowing" is determining when conditions for values must be ''false''. Narrowing starts when the value of two value sets is asserted equal.
Narrowing by asserting equal
Assertion that two value sets are equal gives the narrowing rule,
:
For the derivation, start with,
:
The value condition gives,
:
:
:
:
Narrowing by conjunction
If any base condition is false, all the conditions obtained from it are false.
This comes from the definition of the Condition function,
:
The base condition for (r, z, u) is,
:
So if this is false
is false.
Narrowing by crossed conditions
If a dependent condition list has two different base conditions from the same value set it must be false.
To derive this, start with the exclusion rule which is,
:
Then for any set of dependent conditions ''l'',
:
:
:
:
So if a dependent condition list is based on two conditions from the same value set, the condition value of that dependent condition list is false.
Narrowing by exclusion of dependent values
Each value set puts a constraint on the base value set from which it is constructed. If a base values set includes values that are not present as dependent values in the value set, the conditions for these values must be false.
To derive this, start with the complete set rule,
:
The condition function is,
:
A particular dependent condition may be chosen, as being implied by the whole condition,
:
So
:
Here
. The expression may be rearranged to define the set of values that
might take,
:
and so,
:
Then using the exclusion rule,
:
gives,
:
This is the narrowing exclusion rule.
is the set of values in the base value ''L'' set which are represented in the value set ''K''. Conditions for other values must be false.
Probabilistic value sets
The value set records the dependent conditions that the condition function may be applied to in order to deduce the truth of the proposition that the value set has a particular value. The same structure may be used to give the probability of a value set being equal to a particular value. The condition function is,
:
The probability function is,
:
This is the probability of each base case holding the particular value, if the events are independent.
The probability function is defined by 3 axioms,
# Each pair
means that the probability of the value set
is ''v'' is the probability function applied to the list,
.
# The sum of the probabilities over the whole value set is 1.
# The probability of any two pairs in the value set is zero.
The probability function gives probabilities for results based on initial probabilities given by
Boolean inductive inference.
Formally,
{, class="wikitable"
, -
! Name !! Definition
, -
, Probability function , ,
, -
, Value condition , ,
, -
, Complete set , ,
, -
, Allowed values , ,
, -
, Exclusion , ,
Probabilities for each value in a value set may be calculated from probabilities in base value sets using the probability function and the value condition. Base value sets are either for a single value, or multiple value value set.
Probability for a single value
The value set to represent a single value is,
:
The complete set rule is,
:
:
:
:
Which is consistent with the axiom.
Probabilities for multiple values
The value set to represent multiple values is,
:
The probability is given by the allowed values rule,
:
which simplifies to,
:
If prior estimates of probabilities for values are given then they will be proportional to the posterior probabilities, if the value is in the value set.
:
If the value is not in the value set the probabilities will be zero,
:
So,
:
:
:
:
If the prior probabilities are all the same the probabilities are,
:
Probabilities of general value sets
A general value set is created out of the application of base value sets. The value condition rule and the probability function may be combined to give,
:
Accessing the value set
Narrowing allows the elimination of values that do not satisfy a variable's constraints. Considered as the basis for an algorithm for solving equations, this narrowing gives a set of values consistent with the constraints on a variable. However in mathematics there is no way to access this set of values.
If
is an expression constraining a variable ''x'' then the set of values that the variable may take is,
:
Define the ''gset'' of ''x'' to be the set of values that satisfy the constraints on ''x''. Consider defining ''gset'' as,
:
This definition depends on knowing the expression ''E'', which is the condition giving all the constraints on ''x''. Within mathematics ''E'' may not be obtained from ''x''. So there is no mathematical function that may be applied to a variable to request the set of values. So may the ''gset'' function be added to mathematics?
Meta math definition
A meta-mathematical definition of ''gset'' may be possible. Imagine that what we know of as mathematics is actually implemented by a
meta function called ''math''. ''math'' takes an
abstract syntax tree
In computer science, an abstract syntax tree (AST), or just syntax tree, is a tree representation of the abstract syntactic structure of text (often source code) written in a formal language. Each node of the tree denotes a construct occurring ...
and gives meaning to the variables and mathematical structures and adds existential quantifiers for variables not explicitly quantified.
''math'' would be an expression in a meta mathematical environment with its own variables. To distinguish these meta-variables from math variables represent them by capital letters and the mathematical variables by lower case letters.
Now suppose there is an extended implementation of mathematics implemented by the ''xmath'' function, defined as,
:
Using ''xmath'', ''gset'' may be defined by,
:
Here
again the notation,
:
is used to mean quantification over variables ''x'' where ''x'' refers to the value, and ''u'' refers to the unique identity of the variable.
Example
For example take the constraint expression
. Then,
:
:
:
Then the ''xmath'' expression is,
:
::
::
::
:
Then where u is the unique identity of the variable x, represented here as the number 1 (for the first variable used in a call to ''gset''),
:
Here