Nanosponges
   HOME

TheInfoList



OR:

Nanosponges are a type of
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
, often a synthesized
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
-containing
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
. They are
porous Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
in structure, pores being about 1–2 nanometers in size, and can therefore be targeted to absorb small amounts of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
or
toxin A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849– ...
. Nanosponges are often used in medicine as targeted
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to d ...
systems, detoxification methods, or as a way of damage control after an injury. They can also be used in environmental applications to clean up
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
s by performing tasks like purifying water or metal deposits. Their small size allows them to move quickly through substances, like water or blood, efficiently finding and attacking unwanted matter. Nanosponges are often synthetically manufactured but oftentimes include natural materials to improve their efficiency when injected into the body. Nanosponges are superior to microsponges in application as the smaller size allows less disruption into the system in which it is implemented therefore imposing less risk of failed or detrimental effects. The prefix "nano" implies that items of this size are measured on a scale of 10^meters.


History

Nanosponges were first referred to as “
cyclodextrin Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion. They are used in food, pharmaceutical, ...
nanosponges” by DeQuan Li and Min Ma in 1998. This term was used because there is a
cross-link In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural ...
ed β-cyclodextrin with organic diisocyanates. An insoluble network is present in this structure, which shows a high inclusion constant. These polymers are formed through the reaction of native cyclodextrins with a cross-linking agent, the latter influencing the behavior and properties of the entire unit. Cyclodextrin nanosponges were not discovered to have potential in being
drug carrier A drug carrier or drug vehicle is a substrate used in the process of drug delivery which serves to improve the selectivity, effectiveness, and/or safety of drug administration. Drug carriers are primarily used to control the release of drugs int ...
s until work done by Trotta and colleagues. They performed syntheses of new kinds of cyclodextrin nanosponges that revealed many potential applications that had not been previously considered.


Mechanisms


Structure

Cyclodextrin Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion. They are used in food, pharmaceutical, ...
s are a class of cyclic glucopyranose
oligomer In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
s, with common structures of α, β, and γ. α-cyclodextrins comprise six glucopyranose units, β- cyclodextrins comprise seven, and γ comprise eight. Cyclodextrins are biological
nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to nan ...
whose molecular structure greatly influences their
supramolecular Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, ...
properties. To synthesize cyclodextrins,
enzymatic Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
action occurs on
hydrolyzed Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis ...
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets ...
. Cyclodextrin nanosponges are made of a three dimensional cross-linked
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
network. They can be made with α, β, and γ cyclodextrins. The inclusion capacity and the solubilizing capacity of the nanosponges can be tuned according to how much of the cross-linking agent is used.


Functions

Cyclodextrin Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion. They are used in food, pharmaceutical, ...
s have a
toroid In mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its ...
al shape, which allows them to have a cavity inside which can fit other
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
s. This useful structure allows them to act as drug carriers in the body, as long as the compounds to be delivered have compatible geometry and
polarity Polarity may refer to: Science *Electrical polarity, direction of electrical current *Polarity (mutual inductance), the relationship between components such as transformer windings * Polarity (projective geometry), in mathematics, a duality of ord ...
with the cavity. To determine when these compounds are delivered, the structure of the cyclodextrin nanosponge can be modified to release its contents sooner or later. Several
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
s can be conjugated on the surface of the nanosponge to determine where it will target in the body.


Naturally inspired synthetic nanosponges


Liposomes

When injected into the body, synthetic nanosponges made of
liposome A liposome is a small artificial vesicle, spherical in shape, having at least one lipid bilayer. Due to their hydrophobicity and/or hydrophilicity, biocompatibility, particle size and many other properties, liposomes can be used as drug deliver ...
s can be coated with
leukocytes White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
. These leukocytes can be incorporated in nanoparticles though methods known as the "ghost-cell" or "hitchhiking" strategy. Hitchhiking strategy is when nanoparticles are trafficked by living leukocytes. The ghost cell method entails nanoparticles coated in the natural membrane. Since they are coated with leukocytes, the nanosponges will pull towards a location of infection or foreign matter in the body. The nanosponges avoid
macrophage Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer cel ...
attack because they are coated with natural materials. Researchers have only tested these in lab animals but suggest the liposome nanosponge could be easier to get approved by the FDA for in-patient use. Researchers have found promising results in using these nanosponges in drug delivery, relieving inflammation, and repairing damaged tissue.


Coatings (RBC & RBC-PL)

Common
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
s can be
toxin A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849– ...
s that form pores in a
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
. These cells target
red blood cell Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "holl ...
s. When there are no red blood cells around, these toxins target
platelet Platelets, also called thrombocytes (from Greek θρόμβος, "clot" and κύτος, "cell"), are a component of blood whose function (along with the coagulation factors) is to react to bleeding from blood vessel injury by clumping, thereby ini ...
s.
Nanorobots Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots whose components are at or near the scale of a nanometer (10−9 meters). More specifically, nanorobotics (as opposed to mi ...
with a coating similar to red blood cells and platelets exist, allowing them to be disguised as a red blood cell and/or platelet. These RBC-PL coated nanorobots display efficient
propulsion Propulsion is the generation of force by any combination of pushing or pulling to modify the translational motion of an object, which is typically a rigid body (or an articulated rigid body) but may also concern a fluid. The term is derived from ...
in blood without apparent
biofouling Biofouling or biological fouling is the accumulation of microorganisms, plants, algae, or small animals where it is not wanted on surfaces such as ship and submarine hulls, devices such as water inlets, pipework, grates, ponds, and rivers that ...
. Their movement mimics the movement of natural cells. This ability to blend in enhances their ability to bind to platelet-adhering pathogens. The increased binding ability helps the nanorobots more effectively neutralize toxins because a pathogen that targets these types of cells would be more likely to interact with the nanorobots. This, in turn, increases the amount of collisions and interactions between the nanorobots and the pathogens/toxins. The nanorobots help to absorb and remove the toxins and bacteria. Other functions of these nanorobots are the ability to neutralize
cytolytic Cytolysis, or osmotic lysis, occurs when a cell bursts due to an osmotic imbalance that has caused excess water to diffuse into the cell. Water can enter the cell by diffusion through the cell membrane or through selective membrane channels ...
activity regardless of the
molecular structure Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that determ ...
, enhancing mass transport, and they may also be able to fight auto-immune diseases. Having a natural coating on something synthetic allows the nanorobots to have the benefits of both natural and synthetic materials.


Environmental application


Oil pollution in the ground

Substances like
crude oil Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crude ...
and
tar Tar is a dark brown or black viscous liquid of hydrocarbons and free carbon, obtained from a wide variety of organic materials through destructive distillation. Tar can be produced from coal, wood, petroleum, or peat. "a dark brown or black bit ...
pollute Pollution is the introduction of contaminants into the natural environment that cause adverse change. Pollution can take the form of any substance (solid, liquid, or gas) or energy (such as radioactivity, heat, sound, or light). Pollutants, the ...
the ground and are difficult to clean up because of how they stick to dirt and soil. These
toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
materials slipping into the soil can cause detrimental health effects to animals and people who consume plants grown in this soil. Current methods of trying to remove these
pollutant A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. These can be both naturally forming (i.e. minerals or extracted compounds like oi ...
s from hazardous waste sites have proven to be costly and inefficient. Engineers at
Cornell University Cornell University is a private statutory land-grant research university based in Ithaca, New York. It is a member of the Ivy League. Founded in 1865 by Ezra Cornell and Andrew Dickson White, Cornell was founded with the intention to teach an ...
have created a 20 nanometer long particle that can self assemble in water so that its orientation allows for a
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are no ...
exterior and
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, th ...
interior. These particles are small enough to travel quickly through sand and soil without getting trapped. The Cornell researchers injected these nanoparticles into the bottom of a steel column filled with sand contaminated by
phenanthrene Phenanthrene is a polycyclic aromatic hydrocarbon (PAH) with formula C14H10, consisting of three fused benzene rings. It is a colorless, crystal-like solid, but can also appear yellow. Phenanthrene is used to make dyes, plastics and pesticides, e ...
and a
polycyclic aromatic hydrocarbon A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. ...
(PAH), components typically found in tar. They watched as the nanoparticles traveled up the column, cleaning the sand along the way. The hydrophobic cores of the nanosponge drew the phenanthrene off the sand grains and into the interior of the sponge. Researchers intend to one day use this technology to improve upon "pump and treat remediation," in which polluted groundwater is pumped up to the surface, cleaned of its
pollutant A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. These can be both naturally forming (i.e. minerals or extracted compounds like oi ...
s, and then injected back into the ground. With these
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s implemented, pollutants can be more efficiently collected without getting trapped in the soil. Once cleaned of the
toxin A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849– ...
s they have collected, they can be injected into the soil once more to continue cleaning.


Purification of wastewater

Some nanosponges are made to be
eco-friendly Environment friendly processes, or environmental-friendly processes (also referred to as eco-friendly, nature-friendly, and green), are sustainability and marketing terms referring to goods and services, laws, guidelines and policies that clai ...
and have a high
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', ''number concentration'', an ...
of carboxyl groups. They are used to remove metal deposits in
wastewater Wastewater is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of domestic, industr ...
in the oceans, where
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and ...
s can absorb these deposits which leads to detrimental build up in their tissue. The concentration of heavy metals grows while going up the
food chain A food chain is a linear network of links in a food web starting from producer organisms (such as grass or algae which produce their own food via photosynthesis) and ending at an apex predator species (like grizzly bears or killer whales), det ...
as organisms eat other organisms. Being at the top of the food pyramid, humans are most at risk for the detrimental effects of these metals in our food. These effects include
allergic reactions Allergies, also known as allergic diseases, refer a number of conditions caused by the hypersensitivity of the immune system to typically harmless substances in the environment. These diseases include hay fever, food allergies, atopic derma ...
,
insomnia Insomnia, also known as sleeplessness, is a sleep disorder in which people have trouble sleeping. They may have difficulty falling asleep, or staying asleep as long as desired. Insomnia is typically followed by daytime sleepiness, low energy, ...
, vision problems, and can be as extreme as to cause mental disability,
dementia Dementia is a disorder which manifests as a set of related symptoms, which usually surfaces when the brain is damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, which negatively affe ...
, and
kidney disease Kidney disease, or renal disease, technically referred to as nephropathy, is damage to or disease of a kidney. Nephritis is an inflammatory kidney disease and has several types according to the location of the inflammation. Inflammation can ...
. Unlike many organic
pollutant A pollutant or novel entity is a substance or energy introduced into the environment that has undesired effects, or adversely affects the usefulness of a resource. These can be both naturally forming (i.e. minerals or extracted compounds like oi ...
s, heavy metals can be removed and destroyed by using
nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to nan ...
like nanosponges. These nanomaterials act as sustainable filtering materials by binding to metals and removing them from wastewater before they disperse into the ecosystem. Using nanosponges for this results in a higher efficiency and lower cost than alternative cleaning methods like ion exchange resins,
activated carbon Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that increase the surface area avail ...
, or other biological agents.
Porous Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
materials produced from
renewable A renewable resource, also known as a flow resource, is a natural resource which will replenish to replace the portion depleted by usage and consumption, either through natural reproduction or other recurring processes in a finite amount of ti ...
and low cost sources, like
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall ...
,
chitin Chitin ( C8 H13 O5 N)n ( ) is a long-chain polymer of ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is probably the second most abundant polysaccharide in nature (behind only cellulose); an estimated 1 billion tons of chit ...
, or
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets ...
, are one of the most promising classes of absorbents in terms of effectiveness.
Cyclodextrin Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion. They are used in food, pharmaceutical, ...
s (CDs) and
amylose Amylose is a polysaccharide made of α-D-glucose units, bonded to each other through α(1→4) glycosidic bonds. It is one of the two components of starch, making up approximately 20–30%. Because of its tightly packed helical structure, amylose ...
are derived from
starch Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets ...
es and are well known for their peculiar structural features and complex properties. The internal cavities in these CDs serve as sites for
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, th ...
or very weakly
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are no ...
molecules and hence generate a strong affinity to organic molecules at water-solid interfaces. In order to properly bind metal to these CDs,
dextrin Dextrins are a group of low-molecular-weight carbohydrates produced by the hydrolysis of starch and glycogen. Dextrins are mixtures of polymers of D-glucose units linked by α-(1→4) or α-(1→6) glycosidic bonds. Dextrins can be produced from ...
s must be chemically changed by adding an
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a sequ ...
ic
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the rest ...
. These functional groups are allowed to undergo
deprotonation Deprotonation (or dehydronation) is the removal (transfer) of a proton (or hydron, or hydrogen cation), (H+) from a Brønsted–Lowry acid in an acid–base reaction.Henry Jakubowski, Biochemistry Online Chapter 2A3, https://employees.csbsju.ed ...
in an
aqueous An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be rep ...
media so the reaction of these with the
hydroxyl groups In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
in dextrin allows negatively charged
insoluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubil ...
polymers to be created . These polymers are known as nanosponges for their
porous Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
characteristic; they are able to bond to both organic molecules and metal deposits. After cleaning, these nanosponges can easily be separated from the water through simple filtration since they are insoluble in all solvents. One type of nanosponge being researched is prepared with β-
cyclodextrin Cyclodextrins are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits joined by α-1,4 glycosidic bonds. Cyclodextrins are produced from starch by enzymatic conversion. They are used in food, pharmaceutical, ...
s and a linear pea starch derivative called linecaps. β-cyclodextrins are used due to low cost and medium-sized pores allowing for a broad range of guest molecules to be collected. Additionally, β-cyclodextrins are favored over
dextrin Dextrins are a group of low-molecular-weight carbohydrates produced by the hydrolysis of starch and glycogen. Dextrins are mixtures of polymers of D-glucose units linked by α-(1→4) or α-(1→6) glycosidic bonds. Dextrins can be produced from ...
polymers, as they can interact with
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s also. Primary and secondary
hydroxyl groups In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry, alcohols and carboxylic acids contain one or more hydroxy ...
can act as coordination sites with some metal ions, and CDs can coordinate more than one ion at a time. These two components are reacted with
citric acid Citric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in t ...
in water to create the nanosponges using sodium hypophosphate monohydrate as a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
for the reaction. These nanosponges were compared to the performance of nanosponges synthesized in the same manner substituting PDMA (pyromellitate substance) for citric acid. A high number of
cross-link In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural ...
s were introduced into the synthesis process in order to create a maximum amount of carboxyl groups. This allowed for a higher
complexation A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many m ...
ability of these nanosponges to other molecules. A high degree of
cross-link In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural ...
ing generally leads to low swellable
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s which are more suited for water treatment, as the water will not take up the space meant for metal waste and can more easily be filtered from water after cleaning. Higher contact time leads to higher efficiency of the cleaning of nanosponges in
wastewater Wastewater is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of domestic, industr ...
. It was found, at high metal concentrations, that pyromellitate was able to absorb more metal deposits. At low concentrations, they both performed nearly identical. However, in the presence of interfering sea water,
citrate Citric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in t ...
nanosponges were able to selectively absorb more metal than the PDMA nanosponges, allowing them to be more effective in the cleanup of metal from salt water. Although the research of these
citric acid Citric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in t ...
nanosponges is still undergoing revision and development, they show promise for being a sustainable way to clean metal deposits from the
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
.


Medical applications


Drug delivery

Nanosponges are being researched to be used for
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to d ...
systems to treat
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
and infectious diseases. Although nanosponges are one three-thousandth the size of
red blood cell Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "holl ...
s, they each can carry thousands of drug molecules. They can hide in the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinte ...
where immune cells try to destroy and remove foreign material from the body. Particles coated with
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. B ...
s from circulating red blood cells cannot be detected. Additionally, particles coated with membranes from circulating
white blood cell White blood cells, also called leukocytes or leucocytes, are the cell (biology), cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and de ...
s or
leukocytes White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
avoid attack from
macrophage Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer cel ...
s. Major concerns regarding recently developed chemical entities include
pharmacokinetic Pharmacokinetics (from Ancient Greek ''pharmakon'' "drug" and ''kinetikos'' "moving, putting in motion"; see chemical kinetics), sometimes abbreviated as PK, is a branch of pharmacology dedicated to determining the fate of substances administered ...
issues, poor
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubil ...
in water, and low
bioavailability In pharmacology, bioavailability is a subcategory of absorption and is the fraction (%) of an administered drug that reaches the systemic circulation. By definition, when a medication is administered intravenously, its bioavailability is 100%. H ...
. These lead to obstacles when using conventional drug dosage forms. Nanosponges can conquer these problems as their
porous Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
structure allows them the unique capability to entrap both
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are no ...
and
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, th ...
drugs and release them in a highly predictable manor. These small sponges travel throughout the body until they reach the targeted site where they bind to the surface and perform controlled drug release. Nanosponge technology is widely explored for its use in
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to d ...
using oral, parenteral, and topical administration techniques. This may include substances such as antineoplastic agents,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s and
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
s, volatile oils, and genetic materials. These small sponges travel throughout the body until they reach the targeted site where they bind to the surface and perform controlled drug release. Potential applications in target site-specific drug delivery include the
lung The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of t ...
s,
spleen The spleen is an organ found in almost all vertebrates. Similar in structure to a large lymph node, it acts primarily as a blood filter. The word spleen comes .
, and
liver The liver is a major Organ (anatomy), organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of proteins and biochemicals necessary for ...
.


Fight antibiotic resistance

Membrane-coated nanosponges could be used to fight antibiotic resistance because they trap and remove toxins from blood. Toxins that attack red blood cells will cling to nanosponges because the sponges are coated with living cells. The sponges absorb the toxins, so they can no longer harm the cells, and the toxins are taken to the liver and broken down.


Detoxification

A study was conducted to determine nanosponges' ability to absorb
pore-forming toxin Pore-forming proteins (PFTs, also known as pore-forming toxins) are usually produced by bacteria, and include a number of protein exotoxins but may also be produced by other organisms such as apple snails that produce perivitellin-2 or earthwor ...
s. Pore-forming toxins (PFTs) are the most common
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
toxins found in nature. They disrupt cells by forming pores in cellular membranes which alter the permeability of the cells. Examples of this include
bacterial infections Pathogenic bacteria are bacteria that can cause disease. This article focuses on the bacteria that are pathogenic to humans. Most species of bacteria are harmless and are often beneficial but others can cause infectious diseases. The number of t ...
and
venom Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action. The toxin is delivered through a specially evolved ''venom apparatus'', such as fangs or a sti ...
. These venoms all use a pore-forming strategy, in which they create pores in the cells they attack in order for them to leak until they are no longer functional. The idea behind this study was that by limiting PFTs the severity of bacterial infections may be able to be reduced. The study was conducted using a nanosponge (
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
ic core) wrapped in a natural
red blood cell Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "holl ...
membrane
bilayer A bilayer is a double layer of closely packed atoms or molecules. The properties of bilayers are often studied in condensed matter physics, particularly in the context of semiconductor devices, where two distinct materials are united to form jun ...
so that the bacteria or venom will attack it. The polymeric core stabilizes the membrane shell and the membrane bilayer allows the nanosponge to absorb a wide range of PFTs. Testing was done to determine the ability of the nanosponges to neutralize PFTs. Researchers found that the nanosponge absorbed membrane-damaging toxins and diverted them away from their cellular targets. In mice, the nanosponges significantly reduced the
toxicity Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
of
staphylococcal ''Staphylococcus'' is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. ''Staphylococcus'' species are facultative ...
α-hemolysin and improved the survival rate. The membrane draped nanoparticles work so that once a toxin has attacked, it is trapped within the scaffolding of the nanosponge. After the nanosponge is full of toxins and cannot trap anymore it moves to the liver to filter out the toxins. Researchers are posed with is how to tackle all the different types of bacteria and
venom Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action. The toxin is delivered through a specially evolved ''venom apparatus'', such as fangs or a sti ...
, making a lot of different nanosponges for each specific bacteria and venom is nearly impossible. As of now they are focusing on toxins such as;
E. coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escher ...
,
MRSA Methicillin-resistant ''Staphylococcus aureus'' (MRSA) is a group of Gram-positive bacteria that are genetically distinct from other strains of ''Staphylococcus aureus''. MRSA is responsible for several difficult-to-treat infections in humans. ...
,
pneumonia Pneumonia is an inflammatory condition of the lung primarily affecting the small air sacs known as alveoli. Symptoms typically include some combination of productive or dry cough, chest pain, fever, and difficulty breathing. The severity ...
,
bee venom Apitoxin or bee venom is the venom produced by the honey bee. It is a cytotoxic and hemotoxic bitter colorless liquid containing proteins, which may produce local inflammation. It may have similarities to sea nettle toxin. Components Bee venom is ...
,
snake venom Snake venom is a highly toxic saliva containing zootoxins that facilitates in the immobilization and digestion of prey. This also provides defense against threats. Snake venom is injected by unique fangs during a bite, whereas some species are a ...
and
sea anemone Sea anemones are a group of predation, predatory marine invertebrates of the order (biology), order Actiniaria. Because of their colourful appearance, they are named after the ''Anemone'', a terrestrial flowering plant. Sea anemones are classifi ...
venom. A single nanosponge can capture many of the bacteria and venoms, instead of being tailored to each individually because when the venom physically tried to induce a whole in the red blood cell membrane, the venom will get stuck inside the sponge. An obstacle researchers are faced with is the lifespan of the nanosponges. Once nanosponges are injected they can move rapidly through the blood system, and be found in the liver to be filtered out within hours. This means the nanosponge does not have enough time to soak up the maximum amount of toxin that it can hold. Researchers are working on a technique using
hydrogel A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels ar ...
to coat the nanosponges to increase the life of the nanosponge and help them to remain stationary after injection to more efficiently purge the body of toxins. A study done by The University of California found that 80 percent of nanosponges coated with a
hydrogel A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels ar ...
lasted more than two days after injection. Only 20 percent of nanosponges not coated in the
hydrogel A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels ar ...
lasted two hours after injection, and diffused to other locations in the body.


Safety applications


Explosive detection

Properties of
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s can be altered through nanoparticle-
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
systems which are targeted to specific
analyte An analyte, component (in clinical chemistry), or chemical species is a substance or chemical constituent that is of interest in an analytical procedure. The purest substances are referred to as analytes, such as 24 karat gold, NaCl, water, etc. ...
s.
Electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
properties of nanosponges can be altered by analyte binding to be used as a
transducer A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and contr ...
in chemical sensing systems, specifically for explosive analytes. Sensors based on these properties are intended to detect low concentrations of explosive analytes in both solution and vapor phase based detection. These systems can be built from detection systems from standard components as the signal collected from these transducers is measured with standard scientific instrumentation, allowing this to be a more applicable option of explosive detection.
Semiconducting A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
metal oxides are widely considered as the most promising platform for solid-state gas sensors. Due to enhanced responsiveness of conductance to surface effects, various forms of metal oxides that have been nanostructured have been synthesized and their sensing properties studied.
Surface plasmon resonance Surface plasmon resonance (SPR) is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material in a particle stimulated by incident light. SPR is the basis of many standard tools for measu ...
(SPR) band of
colloid A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
al gold
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s (AuNPs) is one electromagnetic property that was examined. In AuNPs, the free
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s within the metal surface will interact with light, which results in large
oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
s in the surface electromagnetic field. This results in the particles absorbing light strongly at the particular
resonant Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
frequencies Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of these electrons, promoting SPR bands. In order to use this concept in sensor systems, one must use them in surface enhances Raman spectroscopy (SERS). A
Raman spectrum Raman spectroscopy () (named after Indian physicist C. V. Raman) is a Spectroscopy, spectroscopic technique typically used to determine vibrational modes of Molecule, molecules, although rotational and other low-frequency modes of systems may als ...
can be used to fingerprint a molecule, using incident light to excite Raman active vibrational modes irreversible scattering of
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s. This creates a unique spectrum that can provide information on molecular shape. The spectrum obtained from an unknown analyte can be compared to the library of known spectra to identify any threats.
Raman scattering Raman scattering or the Raman effect () is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a ...
is very weak, making detection difficult to enhancement is required. If a
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
is bound to a metal surface, incident light excites the surface
plasmon In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantiz ...
s, inducing polarization in the bound molecules, increasing the amount of irreversible scattered light from the Raman vibrational modes leading to signal enhancement. The best SERS enhancement is achieved by having strong localized
plasmon In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantiz ...
s that fall within the wavelength of the Raman laser excitation, which is why
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile met ...
and
silver Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
are often used. With their SPR bands being anywhere from 400 to 800 nanometers, the SPR bands in gold and silver particles are easy to access with visible light. Additionally, they are stable in air as they are chemically inert. The
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
of colloidal
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s is another property analyzed in creating sensor systems.
Quantum dot Quantum dots (QDs) are semiconductor particles a few nanometres in size, having light, optical and electronics, electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanote ...
s are semiconducting
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s which are small enough to confine a generated hole-electron pair in all three spatial directions, leading to quantization of the energy levels causing the electronic structure of the material to sit between a classical semiconductor and a classic molecular material. This quantization causes nanoparticles to display sharp
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
absorption and
emission Emission may refer to: Chemical products * Emission of air pollutants, notably: **Flue gas, gas exiting to the atmosphere via a flue ** Exhaust gas, flue gas generated by fuel combustion ** Emission of greenhouse gases, which absorb and emit radi ...
bands, and the
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in ...
is closely related to the size of the nanoparticle. Fluorescence arises from
photoexcitation Photoexcitation is the production of an excited state of a quantum system by photon absorption. The excited state originates from the interaction between a photon and the quantum system. Photons carry energy that is determined by the wavelengths ...
in these quantum dots and is easily tuned to the visible or near
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
region of the spectrum, by choice of semiconductor material and particle size, making quantum-useful
fluorophore A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with se ...
s. Quantum dots have many properties of interest in order to be used as chemical sensors, including their high fluorescent quantum yields, resistance to
photobleaching In optics, photobleaching (sometimes termed fading) is the photochemical alteration of a dye or a fluorophore molecule such that it is permanently unable to fluoresce. This is caused by cleaving of covalent bonds or non-specific reactions between t ...
, and broad absorption allowing for narrow emission bands. They lend themselves nicely to multichannel fluorophore systems, with single excitation wavelength causing emission from many species of many different colors. The surface of these particles can be changed with targeting
ligand In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
s to allow specific fluorescent enhancement. These optical properties of quantum dots are being exploited to build an explosive sensing array of dots. By combining multichannel fluorophore systems with variable response to different explosives, it is possible to identify different explosives at low concentrations. This technology can be used in
wastewater Wastewater is water generated after the use of freshwater, raw water, drinking water or saline water in a variety of deliberate applications or processes. Another definition of wastewater is "Used water from any combination of domestic, industr ...
or ground
pollution Pollution is the introduction of contaminants into the natural environment that cause adverse change. Pollution can take the form of any substance (solid, liquid, or gas) or energy (such as radioactivity, heat, sound, or light). Pollutants, the ...
, as well in areas of hazardous waste to identify areas of threat or contaminated substances that could cause health risks to people and animals.


Current primary medical research

Current research is mainly being done for medical application for use of nanosponges in treating bacterial infections (
sepsis Sepsis, formerly known as septicemia (septicaemia in British English) or blood poisoning, is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. This initial stage is follo ...
,
pneumonia Pneumonia is an inflammatory condition of the lung primarily affecting the small air sacs known as alveoli. Symptoms typically include some combination of productive or dry cough, chest pain, fever, and difficulty breathing. The severity ...
, and skin and soft tissue infections), viral infections (
zika Zika fever, also known as Zika virus disease or simply Zika, is an infectious disease caused by the Zika virus. Most cases have no symptoms, but when present they are usually mild and can resemble dengue fever. Symptoms may include fever, red ...
,
HIV The human immunodeficiency viruses (HIV) are two species of ''Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune ...
, and
influenza Influenza, commonly known as "the flu", is an infectious disease caused by influenza viruses. Symptoms range from mild to severe and often include fever, runny nose, sore throat, muscle pain, headache, coughing, and fatigue. These symptoms ...
), autoimmune diseases (
rheumatoid arthritis Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involv ...
,
autoimmune hemolytic anemia Autoimmune hemolytic anemia (AIHA) occurs when antibodies directed against the person's own red blood cells (RBCs) cause them to burst (lyse), leading to an insufficient number of oxygen-carrying red blood cells in the circulation. The lifetime of ...
,
immune thrombocytopenic purpura Immune thrombocytopenic purpura (ITP), also known as idiopathic thrombocytopenic purpura or immune thrombocytopenia, is a type of thrombocytopenic purpura defined as an isolated low platelet count with a normal bone marrow in the absence of othe ...
), and
venom Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action. The toxin is delivered through a specially evolved ''venom apparatus'', such as fangs or a sti ...
s (snakes and other animals). A lot of research is only in its primary stages as implementing these solution to the human body poses many risks for which these applications of nanosponges are not yet developed enough.


Brain injury reduction

Nanosponges have been tested experimentally on mice and have been shown to reduce swelling from brain or head injury. When an injury occurs, tissue in the area of injury will swell and immune cells will race to the damages area. When this injury is in the head, this racing of
immune cells White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
will lead to swelling in the brain and can be dangerous because the brain is contained within the cell and therefore there is no place for it to move leading to pressure in the head that can be detrimental. Research suggest nanoparticles can be injected into the head as a way to distract immune cells from rushing to the brain which will reduce swelling. After head injury, mice were left to be for two to three hours and subsequently injected with
biodegradable Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegradati ...
nanoparticles made from an unspecified but
FDA The United States Food and Drug Administration (FDA or US FDA) is a federal agency of the Department of Health and Human Services. The FDA is responsible for protecting and promoting public health through the control and supervision of food s ...
approved
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
which is commonly used in some dissolving sutures. Instead of rushing to the head, some immune cells called
monocyte Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and conventional dendritic cells. As a part of the vertebrate innate immune system monocytes also inf ...
s ran towards these nanosponges instead of the brain. The
monocyte Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and conventional dendritic cells. As a part of the vertebrate innate immune system monocytes also inf ...
s engulfed the nanoparticles and the cells as well as the nanoparticles are then sent to the spleen for elimination in the body. Because the elimination of these particles can happen so fast, researchers were able to inject
mice A mouse ( : mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
once more two to three days later to combat
inflammation Inflammation (from la, wikt:en:inflammatio#Latin, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or Irritation, irritants, and is a protective response involving im ...
that might come back slowly after injury. Mice with this treatment fared better in recovery than those that did not receive this injection and the injured spot reduced to half its size in mice with the nanoparticle treatment. Mice's vision cells performed better in response to light and were able to better walk across a ladder after recovering showing improvement in behavior and motor function. Other potential therapies to treat trauma rely on drugs or other cargo to be sent alongside the nanoparticles however this study was done using bare nanoparticles making it cheaper and safer in trial as less material is injected into the
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and ...
. Researchers have not tested this study on human injury. Factors like severity of injury and general recovery time will determine the effects of sending these nanoparticles inside the body. The way the brain suffers involve more bodily reactions that simply this immune response and if accumulation of nanoparticles if not removed from the body fast enough, they may spread to other parts of the body and cause
toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
damage.


Macrophage biomimetic nanoparticles for management of sepsis

Currently,
sepsis Sepsis, formerly known as septicemia (septicaemia in British English) or blood poisoning, is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs. This initial stage is follo ...
treatments are lacking. Most treatments are just supportive and not effective against fighting the infection. Research that uses nanoparticles that are biomimetic to macrophages. The
macrophage Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer cel ...
coating onto the nanoparticle surface increases the surface to volume ratio of the nanoparticle. This increased ratio is important for efficient
endotoxin Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide that are bacterial toxins. They are composed of an O-antigen, an outer core, and an inner core all joined by a covalent bond, and are found in the outer ...
neutralization. These macrophages act as decoys that can bind to and neutralize endotoxins. Without neutralizing these endotoxins, an immune response would be triggered. These nanoparticles are able to sequester
proinflammatory cytokines An inflammatory cytokine or proinflammatory cytokine is a type of signaling molecule (a cytokine) that is secreted from immune cells like helper T cells (Th) and macrophages, and certain other cell types that promote inflammation. They include int ...
which inhibit the ability to start a septic response. These have been tested in a mouse ''
Escherichia coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escher ...
'' bacteremia model, where the nanoparticles were able to significantly increase the survival of the mice by decreasing the proinflammatory cytokine levels and preventing the bacteria from disseminating. This cannot be replicated in the medical field yet, but it shows promise toward being able to treat sepsis.


Treating ischemic strokes

Mn3O4@ nanoerythrocyte-T7 (MNET) nanosponges can regulate
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
and scavenge
free radicals In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spont ...
in the event of an
ischemic stroke A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functionin ...
, which is a global leading cause of death and disability. These engineered nanosponges can help attenuate
hypoxia Hypoxia means a lower than normal level of oxygen, and may refer to: Reduced or insufficient oxygen * Hypoxia (environmental), abnormally low oxygen content of the specific environment * Hypoxia (medical), abnormally low level of oxygen in the tis ...
after a stroke by mimicking red blood cells and increasing the amount of oxygen in the
infarct Infarction is tissue death (necrosis) due to Ischemia, inadequate blood supply to the affected area. It may be caused by Thrombosis, artery blockages, rupture, mechanical compression, or vasoconstriction. The resulting lesion is referred to as a ...
area. This allows for the extension of the survival time of neurocytes, a crucial part of treating an ischemic stroke because their normal functions must be maintained. MNET works because it contains
hemoglobin Hemoglobin (haemoglobin BrE) (from the Greek word αἷμα, ''haîma'' 'blood' + Latin ''globus'' 'ball, sphere' + ''-in'') (), abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythrocyte ...
, which allows for there to be an
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
sponge effect. This effect works by releasing oxygen in
hypoxic Hypoxia means a lower than normal level of oxygen, and may refer to: Reduced or insufficient oxygen * Hypoxia (environmental), abnormally low oxygen content of the specific environment * Hypoxia (medical), abnormally low level of oxygen in the tis ...
areas and absorbing it in oxygen-rich areas. The sponge effect, along with the free radical scavenging, can successfully and efficiently treat ischemic strokes.
Biomimetic Biomimetics or biomimicry is the emulation of the models, systems, and elements of nature for the purpose of solving complex human problems. The terms "biomimetics" and "biomimicry" are derived from grc, βίος (''bios''), life, and μίμησ ...
nanoparticles, like MNET nanosponges, can easily pass the Blood-Brain Barrier (BBB). The efficiency of the BBB-crossing of MNET is improved by the T7
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
, which is critical in treating an ischemic stroke. In a study on middle cerebral
artery An artery (plural arteries) () is a blood vessel in humans and most animals that takes blood away from the heart to one or more parts of the body (tissues, lungs, brain etc.). Most arteries carry oxygenated blood; the two exceptions are the pul ...
occlusion (MCAO) rats, those treated with MNET experienced a significant
attenuation In physics, attenuation (in some contexts, extinction) is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable att ...
of neurological damage.


Limitations of research

Although research is moving forward, scientists have found some limitations. The use of both natural exterior components with synthetic interior components increases the complexity of development of nanosponges. Low
solubility In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubil ...
and
aqueous An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be rep ...
instability are leading causes of structural complexity. Additionally, their small size and unique properties at the
nanoscale The nanoscopic scale (or nanoscale) usually refers to structures with a length scale applicable to nanotechnology, usually cited as 1–100 nanometers (nm). A nanometer is a billionth of a meter. The nanoscopic scale is (roughly speaking) a lo ...
make it difficult to fully extract them out of the body or
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
, which could cause increasing amounts of unwanted synthetic material in the environment or in the body. For this reason, it is also hard to conduct human studies. Like any medical research, there is a large range of risk associated with implementing new treatments, as results could potentially be fatal. If
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s are unable to be extracted from the body, the
toxicity Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
content could cause internal harm to the patient. The body's rejection of these nanoparticles could also cause an unwanted
immunoresponse The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinters, ...
, which could harm the body more than helping it. For example, Dr. Zhang of the
University of California, San Diego The University of California, San Diego (UC San Diego or colloquially, UCSD) is a public university, public Land-grant university, land-grant research university in San Diego, California. Established in 1960 near the pre-existing Scripps Insti ...
suggests that for
rheumatoid arthritis Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involv ...
, this could elicit an
immune response An immune response is a reaction which occurs within an organism for the purpose of defending against foreign invaders. These invaders include a wide variety of different microorganisms including viruses, bacteria, parasites, and fungi which could ...
, therefore, not fighting the disease but driving it. If
neutrophil Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
membranes are used to coat nanoparticles, they contain autoantigens which causes an immune response.


References

{{reflist Nanoparticles by morphology