HOME

TheInfoList



OR:

Nanoinjection is the process of using a microscopic lance and electrical forces to deliver DNA to a cell. It is claimed to be more effective than
microinjection Microinjection is the use of a glass micropipette to inject a liquid substance at a microscopic or borderline macroscopic level. The target is often a living cell but may also include intercellular space. Microinjection is a simple mechanical pro ...
because the lance used is ten times smaller than a
micropipette A pipette (sometimes spelled as pipett) is a laboratory tool commonly used in chemistry, biology and medicine to transport a measured volume of liquid, often as a media dispenser. Pipettes come in several designs for various purposes with diff ...
and the method uses no fluid. The nanoinjector mechanism is operated while submerged in a pH buffered solution. Then, a positive electrical charge is applied to the lance, which accumulates negatively charged DNA on its surface. The nanoinjector mechanism then penetrates the
zygotic A zygote (, ) is a eukaryote, eukaryotic cell (biology), cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual ...
membranes, and a negative charge is applied to the lance, releasing the accumulated DNA within the cell. The lance is required to maintain a constant elevation on both entry and exit of the cell. Nanoinjection results in a long-term cell viability of 92% following the
electrophoretic Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric fi ...
injection process with a 100 nm diameter nanopipette, the typical diameter of nanoinjection pipet. Single cell transfections are used to virtually transfer any type of mammalian cell into another using a syringe which creates an entry for DNA to be released. A nano needle is used as a mechanical vector for plasmid DNA. This is called Atomic Force Microscopy or AFM. The purpose is to not cause permanent damage to the cell or provoke cellular leaking of intracellular fluid. AFM is a tool of choice as it allows for precise positioning of the DNA. This is important because it allows for tip penetration into the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
, which is critical for viable DNA transfer into the cell. Reasons to use nanoinjection include the insertion of genetic material into the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
of a zygote. This method is a critical step in understanding and developing gene functions. Nanoinjection is also used to genetically modify animals to aid in the research of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
,
Alzheimer’s Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As t ...
disease, and diabetes.


Fabrication

The lance is made using the polyMUMPs fabrication technology.  It creates a gold layer, and two structural layers that are 2.0 and 1.5 μm thick respectively.  It is a simple process, which makes it good as a platform to prototype
polysilicon Polycrystalline silicon, or multicrystalline silicon, also called polysilicon, poly-Si, or mc-Si, is a high purity, polycrystalline form of silicon, used as a raw material by the solar photovoltaic and electronics industry. Polysilicon is produce ...
MEMS Microelectromechanical systems (MEMS), also written as micro-electro-mechanical systems (or microelectronic and microelectromechanical systems) and the related micromechatronics and microsystems constitute the technology of microscopic devices, ...
devices at a low commercial cost of fabrication.  The lance has a solid, tapered body, that is 2 μm thick, with a tip width of 150 nm.  The taper is set at 7.9°, coming to a maximum width of 11 μm. Two highly folded electrical connections provide an electrical path between the lance and two equivalent bond pads, with a gold wire connecting one of the bond pads to an integrated circuit chip carrier’s pin.  The carrier is then placed into a custom built electrical socket. In the situation of fertilizing eggs, the lance is incorporated into a kinematic mechanism consisting of a change-point parallel-guiding six-bar mechanism and a compliant parallel-guiding folded-beam suspension.


Techniques


Electrophoretic Injection

Electrophoretic Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric fi ...
injection remains the most common form of nanoinjection. Just as with the other methods, a lance ten times smaller than that of microinjection is used. Preparing the lance for injection, a positive charge is applied, attracting the negatively-charged DNA to its tip. After the lance has reached a desired depth within the cell, the charge is reversed, repelling the DNA into the cell. The typical injection
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
s are ±20 V, but can be as low as 50-100 mV.


Diffusion

A manual force is applied to a center fixture of the injection device, moving the lances through cell membranes and into the
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
or
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom * Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
of adhered cells. The magnitude of the force is measured using a force plate on a small number of injections to obtain an estimate of the manual force. The force plate is arranged to measure the force actually applied to the injection chip (that is, not including the stiffness of the support spring). After holding the force for five seconds, the force is released and the injection device is removed from the cell. The diffusion protocol presented data for comparison against other variations in the injection process.


Applications

By delivering certain particles into cells,
disease A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
s can be treated or even cured.
Gene therapy Gene therapy is a medical field which focuses on the genetic modification of cells to produce a therapeutic effect or the treatment of disease by repairing or reconstructing defective genetic material. The first attempt at modifying human DN ...
is possibly the most common field of foreign material delivery into cells and has great implications for curing human genetic diseases. For example, two monkeys colorblind from birth were given gene therapy treatment in a recent experiment. As a result of gene therapy, both animals had their color vision restored with no apparent side effects. Traditionally, gene therapy has been divided into two categories: biological (viral) vectors and chemical or physical (nonviral) approaches. Although viral vectors are currently the most effective approach to delivering DNA into cells, they have certain limitations, including
immunogenicity Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted: * Wanted immunogenicity typically relates to vaccines, where the injectio ...
,
toxicity Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subs ...
, and limited capacity to carry DNA. One factor critical to successful gene therapy is the development of efficient delivery systems. Although advances in gene transfer technology, including viral and non-viral vectors, have been made, an ideal vector system has not yet been constructed.{{Cite journal, date=2005-04-05, title=Physical methods for gene transfer: Improving the kinetics of gene delivery into cells, journal=Advanced Drug Delivery Reviews, language=en, volume=57, issue=5, pages=733–753, doi=10.1016/j.addr.2004.12.007, issn=0169-409X, last1=Mehierhumbert, first1=S., last2=Guy, first2=R., pmid=15757758


Alternatives

Microinjection is the predecessor to nanoinjection. Still used in biological research, microinjection is useful in the examination of non-living cells or in cases where cell viability does not matter. Using a glass pipette 0.5-1.0 micrometers in diameter, the cell has its membrane damaged upon puncture. As opposed to nanoinjection, microinjection uses DNA-filled liquid driven into the cell under pressure. Depending on factors such as the skill of the operator, survival rates of cells undergoing this procedure can be as high as 56% or as low as 9%. Other methods exist that target groups of cells, such as
electroporation Electroporation, or electropermeabilization, is a microbiology technique in which an electrical field is applied to cells in order to increase the permeability of the cell membrane, allowing chemicals, drugs, electrode arrays or DNA to be introd ...
. These methods are incapable of targeting specific cells, and are therefore not usable where efficiency and cell viability are a concern.


References

Cell biology