Nanocatalyst
   HOME

TheInfoList



OR:

Nanomaterial-based catalysts are usually
heterogeneous catalyst In chemistry, heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. P ...
s broken up into
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles.


Functionalized nanoparticles

Functionalized metal nanoparticles are more stable toward solvents compared to non-functionalized metal nanoparticles. In liquids, the metal nanoparticles can be affected by
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
.
Particle aggregation Particle agglomeration refers to formation of assemblages in a suspension and represents a mechanism leading to the functional destabilization of colloidal systems. During this process, particles dispersed in the liquid phase stick to each other, ...
can sometimes decrease catalytic activity by lowering the surface area. Nanoparticles can also be functionalized with
polymers A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic an ...
or
oligomers In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relativ ...
to sterically stabilize the nanoparticles by providing a protective layer that prevents the nanoparticles from interacting with each other.
Alloys An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility ...
of two metals, called bimetallic nanoparticles, are used to create synergistic effects on catalysis between the two metals.


Potential applications


Dehalogenation and hydrogenation

Nanoparticle catalysts are active for the
hydrogenolysis Hydrogenolysis is a chemical reaction whereby a carbon–carbon or carbon–heteroatom single bond is cleaved or undergoes lysis (breakdown) by hydrogen.Ralph Connor, Homer Adkins. Hydrogenolysis Of Oxygenated Organic Compounds. J. Am. Chem. Soc. ...
of C-Cl bonds such as
polychlorinated biphenyls Polychlorinated biphenyls (PCBs) are highly carcinogenic chemical compounds, formerly used in industrial and consumer products, whose production was banned in the United States by the Toxic Substances Control Act in 1979 and internationally by ...
. Another reaction is hydrogenation of halogenated
aromatic amines In organic chemistry, an aromatic amine is an organic compound consisting of an aromatic ring attached to an amine. It is a broad class of compounds that encompasses aniline Aniline is an organic compound with the formula C6 H5 NH2. Consi ...
is also important for the synthesis of herbicides and pesticides as well as
diesel fuel Diesel fuel , also called diesel oil, is any liquid fuel specifically designed for use in a diesel engine, a type of internal combustion engine in which fuel ignition takes place without a spark as a result of compression of the inlet air and ...
. In
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, ...
, hydrogenation of a C-Cl bond with
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
is used to selectively label the
aromatic ring In chemistry, aromaticity is a chemical property of cyclic ( ring-shaped), ''typically'' planar (flat) molecular structures with pi bonds in resonance (those containing delocalized electrons) that gives increased stability compared to satur ...
for use in experiments dealing with the
kinetic isotope effect In physical organic chemistry, a kinetic isotope effect (KIE) is the change in the reaction rate of a chemical reaction when one of the atoms in the reactants is replaced by one of its isotopes. Formally, it is the ratio of rate constants for th ...
. Buil ''et al.'' created
rhodium Rhodium is a chemical element with the symbol Rh and atomic number 45. It is a very rare, silvery-white, hard, corrosion-resistant transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring i ...
complexes that generated rhodium nanoparticles. These nanoparticles catalyzed the dehalogenation of aromatic compounds as well as the hydrogenation of
benzene Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms ...
to cyclohexane. Polymer-stabilized nanoparticles can also be used for the hydrogenation of
cinnamaldehyde Cinnamaldehyde is an organic compound with the formula(C9H8O) C6H5CH=CHCHO. Occurring naturally as predominantly the ''trans'' (''E'') isomer, it gives cinnamon its flavor and odor. It is a phenylpropanoid that is naturally synthesized by the sh ...
and
citronellal Citronellal or rhodinal ( C10 H18 O) is a monoterpenoid aldehyde, the main component in the mixture of terpenoid chemical compounds that give citronella oil its distinctive lemon scent. Citronellal is a main isolate in distilled oils from the p ...
. Yu ''et al.'' found that the ruthenium nanocatalysts are more selective in the hydrogenation of citronellal compared to the traditional catalysts used.


Hydrosilylation reactions

The Reduction of
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
,
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
,
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow ...
,
palladium Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself na ...
, or
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
organometallic complexes with
silanes Silanes refers to diverse kinds of charge-neutral silicon compounds with the formula . The R substituents can any combination of organic or inorganic groups. Most silanes contain Si-C bonds, and are discussed under organosilicon compounds. Examp ...
produces metal nanoparticle that catalyze the hydrosilylation reaction.
BINAP BINAP (2,2′-bis(diphenylphosphino)-1,1′-binaphthyl) is an organophosphorus compound. This chiral diphosphine ligand is widely used in asymmetric synthesis. It consists of a pair of 2-diphenylphosphinonaphthyl groups linked at the 1 and ...
-functionalized palladium nanoparticles and gold nanoparticles have been used for the hydrosilylaytion of
styrene Styrene () is an organic compound with the chemical formula C6H5CH=CH2. This derivative of benzene is a colorless oily liquid, although aged samples can appear yellowish. The compound evaporates easily and has a sweet smell, although high concen ...
under mild conditions; they were found to be more catalytically active and more stable than non-nanoparticle Pd-BINAP complexes. The reaction may also be catalyzed by a nanoparticle that consists of two metals.


Organic redox reactions

An oxidation reaction to form
adipic acid Adipic acid or hexanedioic acid is the organic compound with the formula (CH2)4(COOH)2. From an industrial perspective, it is the most important dicarboxylic acid: about 2.5 billion kilograms of this white crystalline powder are produced annuall ...
is shown in figure 3 and it can be catalyzed by cobalt nanoparticles. This is used in an industrial scale to produce the
nylon 6,6 Nylon 66 (loosely written nylon 6-6, nylon 6/6, nylon 6,6, or nylon 6:6) is a type of polyamide or nylon. It, and nylon 6, are the two most common for textile and plastic industries. Nylon 66 is made of two monomers each containing 6 carbon atoms, ...
polymer. Other examples of oxidation reactions that are catalyzed by metallic nanoparticles include the oxidation of
cyclooctane Cyclooctane is a cycloalkane with the molecular formula (CH2)8. It is a simple colourless hydrocarbon, but it is often a reference compound for saturated eight-membered ring compounds in general. Cyclooctane has a camphoraceous odor. Conformat ...
, the
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
of
ethene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon-carbon double bonds). Ethylene i ...
, and
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
oxidation.


C-C coupling reactions

Metallic nanoparticles can catalyze C–C coupling reactions such as the
hydroformylation Hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group (CHO) and a hydrogen atom to a carbon-carbon d ...
of olefins, the synthesis of
vitamin E Vitamin E is a group of eight fat soluble compounds that include four tocopherols and four tocotrienols. Vitamin E deficiency, which is rare and usually due to an underlying problem with digesting dietary fat rather than from a diet low in vi ...
and the Heck coupling and Suzuki coupling reactions. Palladium nanoparticles were found to efficiently catalyze Heck coupling reactions. It was found that increased
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
of the ligands on the palladium nanoparticles increased their catalytic activity. The compound Pd2(dba)3 is a source of Pd(0), which is the catalytically active source of palladium used for many reactions, including cross coupling reactions. Pd2(dba)3 was thought to be a homogeneous catalytic precursor, but recent articles suggest that palladium nanoparticles are formed, making it a heterogeneous catalytic precursor.


Alternative fuels

Iron oxide and
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
nanoparticles can be loaded onto various surface active materials like alumina to convert gases such as
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
and
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
into
liquid hydrocarbon In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and Hydrophobe, hydrophobic, and their odors are usuall ...
fuels using the Fischer-Tropsch process. Much research on nanomaterial-based catalysts has to do with maximizing the effectiveness of the catalyst coating in fuel cells.
Platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
is currently the most common catalyst for this application, however, it is expensive and rare, so a lot of research has been going into maximizing the catalytic properties of other metals by shrinking them to nanoparticles in the hope that someday they will be an efficient and economic alternative to platinum.
Gold nanoparticles Colloidal gold is a sol or colloidal suspension of nanoparticles of gold in a fluid, usually water. The colloid is usually either wine-red coloured (for spherical particles less than 100  nm) or blue/purple (for larger spherical particl ...
also exhibit catalytic properties, despite the fact that bulk gold is unreactive.
Yttrium Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a " rare-earth element". Yttrium is almost always found in co ...
stabilized
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'' ...
nanoparticles were found to increase the efficiency and reliability of a
solid oxide fuel cell A solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte. A ...
. Nanomaterial ruthenium/platinum catalysts could potentially be used to catalyze the purification of hydrogen for
hydrogen storage Hydrogen storage can be accomplished by several existing methods of holding hydrogen for later use. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand ...
. Palladium nanoparticles can be functionalized with organometallic ligands to catalyze the oxidation of CO and NO to control
air pollution Air pollution is the contamination of air due to the presence of substances in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. There are many different typ ...
in the
environment Environment most often refers to: __NOTOC__ * Natural environment, all living and non-living things occurring naturally * Biophysical environment, the physical and biological factors along with their chemical interactions that affect an organism or ...
. Carbon nanotube supported catalysts can be used as a cathode catalytic support for fuel cells and metal nanoparticles have been used to catalyze the growth of
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
. Platinum-cobalt bimetallic nanoparticles combined with
carbon nanotubes A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
are promising candidates for
direct methanol fuel cell Direct-methanol fuel cells or DMFCs are a subcategory of proton-exchange fuel cells in which methanol is used as the fuel. Their main advantage is the ease of transport of methanol, an energy-dense yet reasonably stable liquid at all environmental ...
s since they produce a higher stable current
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
.


Medicine

In magnetic chemistry, nanoparticles can be used for catalyst support for medicinal use.


Nanozymes

Besides conventional catalysis, nanomaterials have been explored for mimicking natural enzymes. The nanomaterials with enzyme mimicking activities are termed as nanozymes. Many nanomaterials have been used to mimic varieties of natural enzymes, such as oxidase, peroxidase, catalase, SOD, nuclease, etc. The nanozymes have found wide applications in many areas, from biosensing and bioimaging to therapeutics and water treatment.


Nanostructures for electrocatalysis

Nanocatalysts are of wide interest in fuel cells and electrolyzers, where the catalyst strongly affects efficiency.


Nanoporous surfaces

In fuel cells, nanoporous materials are widely used to make cathodes. Porous nanoparticles of platinum have good activity in nanocatalysis but are less stable and their lifetime is short.


Nanoparticles

One drawback to the use of nanoparticles is their tendency to agglomerate. The problem can be mitigated with the correct catalyst support. Nanoparticles are optimal structures to be used as nanosensors because they can be tuned to detect specific molecules. Examples of Pd nanoparticles electrodeposited on multi-walled carbon nanotubes have shown good activity towards catalysis of cross-coupling reactions.


Nanowires

Nanowires are very interesting for electrocatalytic purpose because they are easier to produce and the control over their characteristics in the production process is quite precise. Also, nanowires can increase faradaic efficiency due to their spatial extent and thus to greater availability of reactants on the active surface.


Materials

The nanostructures involved in electrocatalysis processes can be made up of different materials. Through the use of nanostructured materials, electrocatalysts can achieve good physical-chemical stability, high activity, good conductivity and low cost. Metallic nanomaterials are commonly made up of transition metals (mostly iron, cobalt, nickel, palladium, platinum). Multi-metal nanomaterials show new properties due to the characteristics of each metal. The advantages are the increase in activity, selectivity and stability and the cost reduction. Metals can be combined in different ways such as in the core-shell bimetallic structure: the cheapest metal forms the core and the most active one (typically a noble metal) constitutes the shell. By adopting this design, the use of rare and expensive metals can be reduced down to 20%. One of the future challenges is to find new stable materials, with good activity and especially low cost. Metallic glasses, polymeric carbon nitride (PCN) and materials derived from metal-organic frameworks (MOF) are just a few examples of materials with electrocatalytic properties on which research is currently investing.


Photocatalysis

Many of the photocatalytic systems can benefit from the coupling with a noble metal; the first Fujishima-Honda cell made use of a co-catalyst plate as well. For instance, the essential design of a disperse photocatalytic reactor for
water splitting Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen: :2 H2O → 2 H2 + O2 Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy, base ...
is that of a water sol in which the dispersed phase is made up of semiconductor
quantum dots Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the ...
each coupled to a metallic co-catalyst: the QD converts the incoming electromagnetic radiation into an exciton whilst the co-catalyst acts as an electron scavenger and lowers the overpotential of the electrochemical reaction.


Characterization of nanoparticles

Some techniques that can be used to characterize functionalized nanomaterial catalysts include
X-ray photoelectron spectroscopy X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative spectroscopic technique based on the photoelectric effect that can identify the elements that exist within a material (elemental composition) or are covering its surface, ...
,
transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
, circular dichroism spectroscopy,
nuclear magnetic resonance spectroscopy Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic fie ...
, UV-visible spectroscopy and related experiments.


See also

*
Nanomaterials * Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to na ...
* Nanotechnology *
Transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
* Quantum dot *
Platinum nanoparticles Platinum nanoparticles are usually in the form of a suspension or colloid of nanoparticles of platinum in a fluid, usually water. A colloid is technically defined as a stable dispersion of particles in a fluid medium (liquid or gas). Spherical pla ...
*
Icosahedral twins An icosahedral twin is a nanostructure appearing for atomic clusters and also nanoparticles with some thousands of atoms. These clusters are twenty-faced, made of twenty interlinked tetrahedra crystals, typically joined along triangular (e.g ...
* Nanozymes


References


Further reading

*{{cite book, last=Santen, first=Rutger Anthony van, title=Molecular heterogeneous catalysis : a conceptual and computational approach, year=2006, publisher=Wiley-VCH, location=Weinheim, isbn=978-3-527-29662-0, edition= nline-Ausg.author2=Neurock, Matthew Catalysis Nanomaterials