HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an identity element, or neutral element, of a
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
operating on a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set o ...
s such as groups and rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with.


Definitions

Let be a set  equipped with a
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary op ...
 ∗. Then an element  of  is called a if for all  in , and a if for all  in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an (often denoted as 0) and an identity with respect to multiplication is called a (often denoted as 1). These need not be ordinary addition and multiplication—as the underlying operation could be rather arbitrary. In the case of a group for example, the identity element is sometimes simply denoted by the symbol e. The distinction between additive and multiplicative identity is used most often for sets that support both binary operations, such as rings, integral domains, and fields. The multiplicative identity is often called in the latter context (a ring with unity). This should not be confused with a unit in ring theory, which is any element having a
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/' ...
. By its own definition, unity itself is necessarily a unit.


Examples


Properties

In the example ''S'' = with the equalities given, ''S'' is a semigroup. It demonstrates the possibility for to have several left identities. In fact, every element can be a left identity. In a similar manner, there can be several right identities. But if there is both a right identity and a left identity, then they must be equal, resulting in a single two-sided identity. To see this, note that if is a left identity and is a right identity, then . In particular, there can never be more than one two-sided identity: if there were two, say and , then would have to be equal to both and . It is also quite possible for to have ''no'' identity element, such as the case of even integers under the multiplication operation. Another common example is the
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and ...
of vectors, where the absence of an identity element is related to the fact that the direction of any nonzero cross product is always orthogonal to any element multiplied. That is, it is not possible to obtain a non-zero vector in the same direction as the original. Yet another example of structure without identity element involves the additive semigroup of positive
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
s.


See also

* Absorbing element * Additive inverse *
Generalized inverse In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element ''x'' is an element ''y'' that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized in ...
* Identity (equation) *
Identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, un ...
* Inverse element *
Monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
* Pseudo-ring * Quasigroup * Unital (disambiguation)


Notes and references


Bibliography

* * * *


Further reading

* M. Kilp, U. Knauer, A.V. Mikhalev, ''Monoids, Acts and Categories with Applications to Wreath Products and Graphs'', De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, {{ISBN, 3-11-015248-7, p. 14–15 Algebraic properties of elements *Identity element Properties of binary operations 1 (number)