HOME

TheInfoList



OR:

Molten-carbonate fuel cells (MCFCs) are high-temperature
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in re ...
s that operate at temperatures of 600 °C and above. Molten carbonate fuel cells (MCFCs) were developed for
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbon di ...
,
biogas Biogas is a mixture of gases, primarily consisting of methane, carbon dioxide and hydrogen sulphide, produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste and food waste. It is ...
(produced as a result of
anaerobic digestion Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to manage waste or to produce fuels. Much of the ferm ...
or biomass gasification), and
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when dead ...
- based
power plant A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid. Many ...
s for
electrical utility An electric utility is a company in the electric power industry (often a public utility) that engages in electricity generation and distribution of electricity for sale generally in a regulated market. The electrical utility industry is a major pr ...
, industrial, and
military A military, also known collectively as armed forces, is a heavily armed, highly organized force primarily intended for warfare. It is typically authorized and maintained by a sovereign state, with its members identifiable by their distin ...
applications. MCFCs are high-temperature fuel cells that use an
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon ...
composed of a molten carbonate salt mixture suspended in a porous, chemically inert ceramic matrix of
beta-alumina solid electrolyte Beta-alumina solid electrolyte (BASE) is a fast ion conductor material used as a membrane in several types of molten salt electrochemical cell. Currently there is no known substitute available. β-Alumina exhibits an unusual layered crystal structur ...
(BASE). Since they operate at extremely high temperatures of 650 °C (roughly 1,200 °F) and above, non-precious
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typica ...
s can be used as
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recy ...
s at the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
and
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
, reducing costs. Improved efficiency is another reason MCFCs offer significant cost reductions over
phosphoric acid fuel cell Phosphoric acid fuel cells (PAFC) are a type of fuel cell that uses liquid phosphoric acid as an electrolyte. They were the first fuel cells to be commercialized. Developed in the mid-1960s and field-tested since the 1970s, they have improved si ...
s (PAFCs). Molten carbonate fuel cells can reach efficiencies approaching 60%, considerably higher than the 37–42% efficiencies of a phosphoric acid fuel cell plant. When the
waste heat Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility ( ...
is captured and used, overall fuel efficiencies can be as high as 85%. Unlike
alkaline In chemistry, an alkali (; from ar, القلوي, al-qaly, lit=ashes of the saltwort) is a basic, ionic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a s ...
, phosphoric acid, and
polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
electrolyte membrane fuel cells, MCFCs don't require an external reformer to convert more energy-dense fuels to
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxi ...
. Due to the high temperatures at which MCFCs operate, these fuels are converted to hydrogen within the fuel cell itself by a process called internal reforming, which also reduces cost. Molten carbonate fuel cells are not prone to
poisoning A poison can be any substance that is harmful to the body. It can be swallowed, inhaled, injected or absorbed through the skin. Poisoning is the harmful effect that occurs when too much of that substance has been taken. Poisoning is not to ...
by
carbon monoxide Carbon monoxide ( chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simp ...
or
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is tr ...
— they can even use carbon oxides as fuel — making them more attractive for fueling with gases made from coal. Because they are more resistant to impurities than other fuel cell types, scientists believe that they could even be capable of internal reforming of coal, assuming they can be made resistant to impurities such as sulfur and particulates that result from converting coal, a dirtier
fossil fuel A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels m ...
source than many others, into hydrogen. Alternatively, because MCFCs require CO2 be delivered to the cathode along with the oxidizer, they can be used to electrochemically separate carbon dioxide from the flue gas of other fossil fuel power plants for sequestration. The primary disadvantage of current MCFC technology is durability. The high temperatures at which these cells operate and the corrosive electrolyte used accelerate component breakdown and corrosion, decreasing cell life. Scientists are currently exploring corrosion-resistant materials for components as well as fuel cell designs that increase cell life without decreasing performance.


Operation


Background

Molten carbonate FCs are a recently developed type of fuel cell that targets small and large energy distribution/generation systems since their power production is in the 0.3-3 MW range. The operating pressure is between 1-8 atm while the temperatures are between 600 and 700 °C. Due to the production of CO2 during reforming of the fossil fuel (methane, natural gas), MCFCs are not a completely green technology, but are promising due to their reliability and efficiency (sufficient heat for co-generation with electricity). Current MCFC efficiencies range from 60 to 70%.


Reactions

Internal Reformer: CH_4 + H_2O = 3H_2 + CO Anode: H_2 + CO_3^ = H_2O + CO_2 + 2e^- Cathode: \fracO_2 + CO_2 +2e^- = CO_3^ Cell: H_2 + \fracO_2 = H_2O Nernst Equation: E = E^o + \fraclog\frac+\fraclog\frac


Materials

Due to the high operating temperatures of MCFC's, the materials need to be very carefully selected to survive the conditions present within the cell. The following sections cover the various materials present in the fuel cell and recent developments in research.


Anode

The
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
material typically consists of a
porous Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure ...
(3-6 μm, 45-70% material porosity) Ni based alloy. Ni is alloyed with either Chromium or Aluminum in the 2-10% range. These alloying elements allow for formation of LiCrO2/LiAlO2 at the grain boundaries, which increases the materials' creep resistance and prevents
sintering Clinker nodules produced by sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing ...
of the anode at the high operating temperatures of the fuel cell. Recent research has looked at using nano Ni and other Ni alloys to increase the performance and decrease the operating temperature of the fuel cell. A reduction in operating temperature would extend the lifetime of the fuel cell (i.e. decrease corrosion rate) and allow for use of cheaper component materials. At the same time, a decrease in temperature would decrease ionic conductivity of the electrolyte and thus, the anode materials need to compensate for this performance decline (e.g. by increasing power density). Other researchers have looked into enhancing creep resistance by using a Ni3Al alloy anode to reduce mass transport of Ni in the anode when in operation.


Cathode

On the other side of the cell, the
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
material is composed of either Lithium metatitanate or of a porous Ni that is converted to a lithiated nickel oxide (lithium is intercalated within the NiO crystal structure). The pore size within the cathode is in the range of 7-15 μm with 60-70% of the material being porous. The primary issue with the cathode material is dissolution of NiO since it reacts with CO2 when the cathode is in contact with the carbonate electrolyte. This dissolution leads to precipitation of Ni metal in the electrolyte and since it is electrically conductive, the fuel cell can get short circuited. Therefore, current studies have looked into the addition of MgO to the NiO cathode to limit this dissolution. Magnesium oxide serves to reduce the solubility of Ni2+ in the cathode and decreases precipitation in the electrolyte. Alternatively, replacement of the conventional cathode material with a LiFeO2-LiCoO2-NiO alloy has shown promising performance results and almost completely avoids the problem of Ni dissolution of the cathode.


Electrolyte

MCFC's use a liquid
electrolyte An electrolyte is a medium containing ions that is electrically conducting through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon ...
(molten carbonate) which consists of a sodium(Na) and potassium(K) carbonate. This electrolyte is supported by a ceramic (LiAlO2) matrix to contain the liquid between the electrodes. The high temperatures of the fuel cell is required to produce sufficient ionic conductivity of carbonate through this electrolyte. Common MCFC electrolytes contain 62% Li2CO3 and 38% K2CO3. A greater fraction of Li carbonate is used due to its higher ionic conductivity but is limited to 62% due to its lower gas solubility and ionic diffusivity of oxygen. In addition, Li2CO3 is a very corrosive electrolyte and this ratio of carbonates provides the lowest corrosion rate. Due to these issues, recent studies have delved into replacing the potassium carbonate with a sodium carbonate. A Li/Na electrolyte has shown to have better performance (higher conductivity) and improves the stability of the cathode when compared to a Li/K electrolyte (Li/K is more
basic BASIC (Beginners' All-purpose Symbolic Instruction Code) is a family of general-purpose, high-level programming languages designed for ease of use. The original version was created by John G. Kemeny and Thomas E. Kurtz at Dartmouth College ...
). In addition, scientists have also looked into modifying the matrix of the electrolyte to prevent issues such as phase changes (γ-LiAlO2 to α-LiAlO2) in the material during cell operation. The phase change accompanies a volume decrease in the electrolyte which leads to lower ionic conductivity. Through various studies, it has been found that an alumina doped α-LiAlO2 matrix would improve the phase stability while maintaining the fuel cell's performance.


MTU fuel cell

The German company
MTU Friedrichshafen MTU Friedrichshafen GmbH is a German manufacturer of commercial internal combustion engines founded by Wilhelm Maybach and his son Karl Maybach in 1909. Wilhelm Maybach was the technical director of Daimler-Motoren-Gesellschaft (DMG), a predec ...
presented an MCFC at the Hannover Fair in 2006. The unit weighs 2 tonnes and can produce 240 kW of electric power from various gaseous fuels, including biogas. If fueled by fuels that contain carbon such as natural gas, the exhaust will contain CO2 but will be reduced by up to 50% compared to diesel engines running on marine bunker fuel.MCFC emission
/ref> The exhaust temperature is 400 °C, hot enough to be used for many industrial processes. Another possibility is to make more electric power via a
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbin ...
. Depending on feed gas type, the electric efficiency is between 12% and 19%. A steam turbine can increase the efficiency by up to 24%. The unit can be used for
cogeneration Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
.


See also

*
Glossary of fuel cell terms The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to ...
*
Hydrogen technologies Hydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses. Some hydrogen technologies are carbon neutral and could have a role in preve ...


References


Sources

* https://web.archive.org/web/20060927032111/http://www.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_types.html#molten


External links


LLNL: The Carbon/Air Fuel Cell Conversion of Coal-Derived Carbons




presented on the Hannover Fair 2006
Logan Energy Limited
integrate, install and operate all fuel cell technologies

molten carbonate fuel cells distributed generation challenge

presentation to Fourth Annual Conference on Carbon Capture and Sequestration {{Fuel cells Fuel cells ko:연료전지#용융탄산염 연료전지 (Molten Carbonate Fuel Cell, MCFC)