HOME

TheInfoList



OR:

Mitochondrial fission is the process where
mitochondria A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is u ...
divide or segregate into two separate mitochondrial organelles. Mitochondrial fission is counteracted by the process of
mitochondrial fusion Mitochondria are dynamic organelles with the ability to fuse and divide ( fission), forming constantly changing tubular networks in most eukaryotic cells. These mitochondrial dynamics, first observed over a hundred years ago are important for the ...
, whereby two separate mitochondria can fuse together to form a large one. Mitochondrial fusion in turn can result in elongated mitochondrial networks. Both mitochondrial fission and fusion are balanced in the cell, and mutations interfering with either processes are associated with a variety of diseases.
Mitochondria A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is u ...
can divide by prokaryotic binary fission and since they require
mitochondrial DNA Mitochondrial DNA (mtDNA or mDNA) is the DNA located in mitochondria, cellular organelles within eukaryotic cells that convert chemical energy from food into a form that cells can use, such as adenosine triphosphate (ATP). Mitochondrial DN ...
for their function, fission is coordinated with
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritance ...
. Some of the proteins that are involved in mitochondrial fission have been identified and some of them are associated with
mitochondrial disease Mitochondrial disease is a group of disorders caused by mitochondrial dysfunction. Mitochondria are the organelles that generate energy for the cell and are found in every cell of the human body except red blood cells. They convert the energy of ...
s. Mitochondrial fission has significant implications in stress response and
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes ( morphology) and death. These changes inclu ...
.


Mechanism


FtsZ Localization

The
FtsZ FtsZ is a protein encoded by the ''ftsZ'' gene that assembles into a ring at the future site of bacterial cell division (also called the Z ring). FtsZ is a prokaryotic homologue of the eukaryotic protein tubulin. The initials FtsZ mean "Filamen ...
protein (a homologue to eukaryotic
tubulin Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytoske ...
), found in many bacteria and some
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archae ...
, plays a role in mitochondrial fission. The
Min system The Min System is a mechanism composed of three proteins MinC, MinD, and MinE used by ''E. coli'' as a means of properly localizing the septum prior to cell division. Each component participates in generating a dynamic oscillation of FtsZ prote ...
plays a role in localizing and assembling FtsZ proteins into a ring around the center of the mitochondria and some proteins tethered to the inner mitochondrial membrane also help anchor the Z ring. The Z ring is anchored at the site of constriction where division will take place. The Z ring acts as a scaffold for the deposition of septum, and it is aided in this by the proteins by FtsW, FtsI and FtsN. The translocase FtsK helps move the mtDNA away from the site of constriction.


Drp1

The
Drp1 Dynamin-1-like protein is a GTPase that regulates mitochondrial fission. In humans, dynamin-1-like protein, which is typically referred to as dynamin-related protein 1 (Drp1), is encoded by the ''DNM1L'' gene and is part of the dynamin superfamily ...
protein is a member of the
dynamin Dynamin is a GTPase responsible for endocytosis in the eukaryotic cell. Dynamin is part of the " dynamin superfamily", which includes classical dynamins, dynamin-like proteins, Mx proteins, OPA1, mitofusins, and GBPs. Members of the dynamin fa ...
family of large GTPases, transcribed from the ''DNM1L'' gene and alternative splicing leads to at least ten isoforms of Drp1 for tissue-specific fission regulation.Kraus, Felix, et al. "Function and regulation of the divisome for mitochondrial fission." Nature 590.7844 (2021): 57-66. Drp1 is involved in the fission of both mitochondria and peroxisomes. The folded Drp1 monomer contains four regions: a head, neck, stalk, and tail. The head domain is a GTPase G domain. The neck is made up of three bundle signaling elements (BSEs). The trunk, which forms the stalk of the protein, involves two units which participate in three different interface interactions. One interface interaction allows for two monomers to associate into dimers whose assembly is promoted at hydrophobic patches in the stalks of each Drp1. Another interaction allows for two dimers to associate into tetramers, and the third interaction allows for tetramers to associate into higher order oligomers. While Drp1 is not localized to the mitochondrial membrane, it is able to associate with the mitochondrial membrane via interactions with several adaptor proteins. In
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constit ...
cells (which are a frequent model for studying mitochondrial fission), the adaptor protein Fis1 is an outer membrane protein and associates with Mdv1 and Caf4, which in turn recruit Drp1. The mammalian FIS1 protein does not play a role in fission but instead is involved in
mitophagy Mitophagy is the selective degradation of mitochondria by autophagy. It often occurs to defective mitochondria following damage or stress. The process of mitophagy was first described over a hundred years ago by Margaret Reed Lewis and Warren Harmo ...
. In human cells, there are four adaptor proteins for Drp1, these being FIS1, MiD49, MiD51, and MFF. In contrast, MIEF1 when bound to Drp1 might prevent mitochondrial fission and thus shift the balance towards fusion of mitochondria. Regulation of Drp1 occurs through phosphorylation of its Ser616 and Ser637 residues. Phosphorylation of Ser616 promotes activity of Drp1 and therefore fission, whereas phosphorylation of Ser637 inhibits Drp1.
Calcineurin Calcineurin (CaN) is a calcium and calmodulin dependent serine/threonine protein phosphatase (also known as protein phosphatase 3, and calcium-dependent serine-threonine phosphatase). It activates the T cells of the immune system and can be blo ...
is capable of dephosphorylating the Ser637 site, activated by rising levels of calcium ions. The mitochondria forms a contact site with the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
(ER), and the ER in turn associates with the mitochondria to form preconstriction sites which are necessary but insufficient for mitochondrial fission to take place. Inverted formin 2 (INF2), a protein localized on the ER, and with the help of SPIRE1C localized on the mitochondria, causes actin to polymerize where bundles of actin diagonally cross each other and recruit myosin II, which assists in localizing Drp1 onto mitochondria. Actin bundles themselves are reservoirs of Drp1 proteins and so their polymerization also helps enable provide a pool of Drp1 proteins to assemble onto the mitochondria. Actin polymerzation also helps trigger a calcium ion influx from the ER and into the mitochondria, which results in the dephosphorylation of the Ser637 residue on Drp1 and then a scission that cleaves the inner mitochondrial membrane will (before the organelle as a whole is divided, and it is not currently known whether division of the inner and outer membranes coincides with the other). Drp1 most commonly forms rings of 16 monomers around the mitochondrial membrane, and this in turn deeply constricts the membrane. Several 16-unit Drp1 rings can assemble and form helical structures that tubulate the mitochondrial membrane. Nearby rings of Drp1 will experience interactions between their G domains (or G-G interactions). G-G interactions reposition catalytic sites to cause GTP hydrolysis, and GTP hydrolysis leads to conformational changes that further assist in the final separation at the constriction site to produce two different mitochondria. The exact process by which the final separation takes place is not yet fully understood.


Role of other organelles

PI(4)P needs to be delivered to the mitochondrial membrane and is necessary for fission to proceed. One mode of delivery of PI(4)P to the mitochondria-ER contact sites is from the Golgi apparatus. Golgi contain ARF1 proteins localized on their membranes, which are capable of recruiting kinases that trigger the synthesis of PI(4)P. PI(4)P is then delivered through a vesicle to mitochondria-ER contact sites. Lysosomes are also often involved in but not necessary for mitochondrial fission. Contact between mitochondria and lysosomes are possible because the Rab7 protein can both form associates with lysosomes and a protein embedded on the outer mitochondrial membrane called TBC1D15. Before fission proceeds, Rab7 will dissociate from lysosomes by hydrolyzing GTP. Contact between the ER and lysosomes also takes place and these contacts also depend on Rab7. A subset of these contacts is also mediated by oxysterol binding protein related protein 1L (ORP1L). ORP1L forms associations with lysosomes via Rab7 and also forms associations with ER via VAMP-associated proteins (VAPs). Overall, this allows for three-way contact between the mitochondria, ER, and lysosomes. The ER recruits lysosomes only after Drp1 has already been recruited (whereas Drp1 itself is recruited after the preconstriction takes place). ORP1L is also required in the transfer of PI(4)P from lysosomes to the mitochondria. PI(4)P is therefore delivered to the mitochondria from both Golgi and lysosomes, and it is possible (though not currently known) that the two organelles provide PI(4)P for different purposes during fission or at different steps in the process, or whether they contribute PI(4)P for entirely distinct forms of mitochondrial fission.


Peripheral and Midzone Division

Recent findings suggest that mitochondria undergo two different mechanisms of fission. In an elongated mitochondrial network, mitochondria are capable of dividing near the center (at the midzone) or towards one of the two ends (or the periphery). Midzone division and peripheral division in mitochondrial networks appears to be involved in two different cellular activities. Midzone division is promoted by biogenesis, when the cell is proliferating and more mitochondria are needed. Peripheral division results in the removal of damaged mitochondrial units from the network formed at the periphery, these mitochondria being destined for autophagy (or mitophagy), destined for destruction. Peripheral division appears to be preceded by elevated concentrations of
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () ...
and reduced membrane potential and pH. These two types of fission appear to be regulated by different molecular mechanisms. The adaptor protein FIS1 appears to be the involved adaptor protein recruiting Drp1 in peripheral division, whereas the adaptor MFF seems to be the involved adaptor protein recruiting Drp1 during midzone division. On the other hand, MiD49 and MiD51 appear to both be involved in both forms of division. Furthermore, the lysosomal contact sites with mitochondria only appear during peripheral division.Kleele, T., Rey, T., Winter, J., Zaganelli, S., Mahecic, D., Lambert, H. P., ... & Manley, S. (2021). Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature, 593(7859), 435-439.


See also

*
Mitochondrial fusion Mitochondria are dynamic organelles with the ability to fuse and divide ( fission), forming constantly changing tubular networks in most eukaryotic cells. These mitochondrial dynamics, first observed over a hundred years ago are important for the ...
*
Binary fission Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that ta ...


References

{{reflist Mitochondrial genetics Cell anatomy