Microscanner
   HOME

TheInfoList



OR:

A microscanner, or micro scanning mirror, is a microoptoelectromechanical system (MOEMS) in the category of micromirror
actuators An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system, for example by opening a valve. In simple terms, it is a "mover". An actuator requires a control device (controlled by control signal) an ...
for dynamic light
modulation In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the ''carrier signal'', with a separate signal called the ''modulation signal'' that typically contains informatio ...
. Depending upon the type of microscanner, the modulatory movement of a single mirror can be either translatory or rotational, on one or two axes. In the first case, a phase shifting effect takes place. In the second case, the incident light wave is deflected. Microscanners are different from
spatial light modulators A spatial light modulator (SLM) is an object that imposes some form of spatially varying modulation on a beam of light. A simple example is an overhead projector transparency. Usually when the term SLM is used, it means that the transparency can ...
and other micromirror actuators which need a matrix of individually addressable mirrors in order to accomplish the desired modulation at any yield. If a single array mirror accomplishes the desired modulation but is operated in parallel with other array mirrors to increase light yield, then the term microscanner array is used.


Characteristics

Common chip dimensions are 4 mm × 5 mm for mirror diameters between 1 and 3 mm. Larger mirror
aperture In optics, an aperture is a hole or an opening through which light travels. More specifically, the aperture and focal length of an optical system determine the cone angle of a bundle of rays that come to a focus in the image plane. An opt ...
s with side measurements of up to approx. 10 mm × 3 mm can also be produced. The scan frequencies depend upon the design and mirror size and range between 0.1 and 50 kHz. The deflection movement is either
resonant Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
or quasi-static. With microscanners that are capable of tilting movement, light can be directed over a projection plane. Many applications requires that a surface is addressed instead of only a single line. For these applications, actuation using a Lissajous pattern can accomplish sinusoidal scan motion, or double resonant operation. Mechanical deflection angles of micro scanning devices reach up to ±30°. Translational (piston type) microscanners, can attain a mechanical stroke of up to approx. ±500 μm. This configuration is energy efficient, but requires complicated control electronics. For high end display applications the common choice is
raster scan A raster scan, or raster scanning, is the rectangular pattern of image capture and reconstruction in television. By analogy, the term is used for raster graphics, the pattern of image storage and transmission used in most computer bitmap image s ...
ning, where a resonant scanner (for the longer display dimension) is paired with quasi-static scanner (for the shorter dimension).


Drive principles

The required drive forces for the mirror movement can be provided by various physical principles. In practice, the relevant principles for driving such a mirror are the
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
,
electrostatic Electrostatics is a branch of physics that studies electric charges at rest (static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber ...
,
thermoelectric The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when ...
, and
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied Stress (mechanics), mechanical s ...
effects. Because the physical principles differ in their advantages and disadvantages, the driving principle is chosen according to the application. Specifically, the mechanical solutions required for resonant scanning are very different for those of quasi-static scanning.
Thermoelectric The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when ...
actuators are not applicable for high-frequency resonant scanners, but the other three principles can be applied to the full spectrum of applications. For resonant scanners, one often employed configuration is the indirect drive. In an indirect drive, a small motion in a larger mass is coupled to a large motion in a smaller mass (the mirror) through mechanical amplification at a favorable mode shape. This is in contrast to the more common direct drive, where the actuator mechanism moves the mirror directly. Indirect drives have been implemented for
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
,
electrostatic Electrostatics is a branch of physics that studies electric charges at rest (static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber ...
, as well as
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied Stress (mechanics), mechanical s ...
actuators. Existing piezoelectric scanners are more efficient using direct drive. Electrostatic actuators offer high power similar to electromagnetic drives. In contrast to an electromagnetic drive, the resulting drive force between the drive structures cannot be reversed in polarity. For the realization of quasi-static components with positive and negative effective direction, two drives with positive and negative polarity are required. As a rule of thumb, vertical comb drives are utilized here. Nevertheless, the highly non-linear drive characteristics in some parts of the deflection area can be hindering for controlling the mirror properly. For that reason many highly developed microscanners today utilize a
resonant Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
mode of operation, where an
eigenmode In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
is activated. Resonant operation is the most energy-efficient. For beam positioning and applications which are to be static-actuated or linearized-scanned, quasi-static drives are required and therefore of great interest. Magnetic actuators offer very good linearity of the tilt angle versus the applied signal amplitude, both in static and dynamic operation. The working principle is that a metallic coil is placed on the moving MEMS mirror itself and as the mirror is placed in a magnetic field, the alternating current flowing in the coil generates Lorentz force that tilts the mirror. Magnetic actuation can either be used for actuating 1D or 2D MEMS mirrors. Another characteristic of the magnetically actuated MEMS mirror is the fact that low voltage is required (below 5V) making this actuation compatible with standard CMOS voltage. An advantage of such an actuation type is that MEMS behaviour does not present hysteresis, as opposed to electrostatic actuated MEMS mirrors, which make it very simple to control. Power consumption of magnetically actuated MEMS mirrors can be as low as 0.04 mW. Thermoelectric drives produce high driving forces, but they present a few technical drawbacks inherent to their fundamental principle. The actuator has to be thermally well insulated from the environment, as well as being preheated in order to prevent thermal drift due to environmental influences. That is why the necessary heat output and power consumption for a thermal
bimorph A bimorph is a cantilever used for actuation or sensing which consists of two active layers. It can also have a passive layer between the two active layers. In contrast, a piezoelectric unimorph has only one active (i.e. piezoelectric) layer and o ...
actuator is relatively high. One further disadvantage is the comparably low displacement which needs to be leveraged to reach usable mechanical deflections. Also thermal actuators are not suitable for high frequency operation due to significant low pass behaviour. Piezoelectric drives produce high force, but as with electrothermal actuators the stroke length is short. Piezoelectric drives are, however, less susceptible to thermal environmental influences and can also transmit high-frequency drive signals well. To achieve the desired angle some mechanism utilizing mechanical amplification will be required for most applications. This has proven to be difficult for quasi-static scanners, although there are promising approaches in the literature using long meandering flexures for deflection amplification. For resonant rotational scanners, on the other hand, scanners using piezoelectric actuation combined with an indirect drive are the highest performer in terms of scan angle and working frequency. However, the technology is newer than electrostatic and electromagnetic drives and remains to be implemented in commercial products.


Fields of Application

Applications for tilting microscanners are numerous and include: * Projection displays * Image recording, e.g. for technical and medical
endoscopes An endoscopy is a procedure used in medicine to look inside the body. The endoscopy procedure uses an endoscope to examine the interior of a hollow organ or cavity of the body. Unlike many other medical imaging techniques, endoscopes are inse ...
* Bar code scanning *
Spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
*
Laser marking Laser engraving is the practice of using lasers to engrave an object. Laser marking, on the other hand, is a broader category of methods to leave marks on an object, which in some cases, also includes color change due to chemical/molecular alte ...
and material processing * Object measurement / triangulation * 3D cameras * Object recognition * 1D and 2D light grid *
Confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a sp ...
/ OCT *
Fluorescence microscopy A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscop ...
* Laser wavelength modulation Some of the applications for piston type microscanners are: * Fourier transform infrared spectrometer *
Confocal microscopy Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser confocal scanning microscopy (LCSM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a sp ...
* Focus variation


Manufacture

Microscanners are usually manufactured with
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
or bulk micromechanic processes. As a rule,
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
or BSOI (bonded
silicon on insulator In semiconductor manufacturing, silicon on insulator (SOI) technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving perfo ...
) are used.


Advantages and disadvantages of microscanners

Microscanners are smaller, lower mass, and consume smaller amounts of power compared to macroscopic light modulators such as galvanometer scanners. Additionally, microscanners can be integrated with other electonic components such as position sensors. Microscanners are resistant to environmental influences, and can tolerate humidity, dust, physical shocks in some models up to 2500g, and can operate in temperatures from -20 °C to +80 °C. With current manufacturing technology microscanners can suffer from high costs and long lead times to delivery. This is an active area of process improvement


References


External links

*
Scanning Micromirrors
'' Mirrorcle Technologies Gimbal-less, Two-axis scanning micromirrors *

'' Fraunhofer Institute for Photonic Microsystems *

'' Adriatic Research Institute *
Getting Started with Analog Mirrors
'' Texas Instruments (Product Page) *

{dead link, date=January 2018 , bot=InternetArchiveBot , fix-attempted=yes .'' Lemoptix (Technology description Page) *
MEMS Laser Scanning Mirrors
'' Maradin Ltd Microtechnology Microelectronic and microelectromechanical systems