Mathieu Group M12
   HOME

TheInfoList



OR:

In the area of modern algebra known as
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
, the Mathieu group ''M12'' is a sporadic simple group of order :   12111098 = 2633511 = 95040.


History and properties

''M12'' is one of the 26 sporadic groups and was introduced by . It is a sharply 5-transitive permutation group on 12 objects. showed that the
Schur multiplier In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group H_2(G, \Z) of a group ''G''. It was introduced by in his work on projective representations. Examples and properties The Schur multiplier \oper ...
of M12 has order 2 (correcting a mistake in where they incorrectly claimed it has order 1). The double cover had been implicitly found earlier by , who showed that M12 is a subgroup of the
projective linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associate ...
of dimension 6 over the
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
with 3 elements. The
outer automorphism group In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a t ...
has order 2, and the full automorphism group M12.2 is contained in M24 as the stabilizer of a pair of complementary dodecads of 24 points, with outer automorphisms of M12 swapping the two dodecads.


Representations

calculated the complex character table of M12. M12 has a strictly 5-transitive permutation representation on 12 points, whose point stabilizer is the Mathieu group M11. Identifying the 12 points with the projective line over the field of 11 elements, M12 is generated by the permutations of PSL2(11) together with the permutation (2,10)(3,4)(5,9)(6,7). This permutation representation preserves a
Steiner system 250px, thumbnail, The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner) ...
S(5,6,12) of 132 special hexads, such that each pentad is contained in exactly 1 special hexad, and the hexads are the supports of the weight 6 codewords of the extended
ternary Golay code In coding theory, the ternary Golay codes are two closely related error-correcting codes. The code generally known simply as the ternary Golay code is an 1, 6, 53-code, that is, it is a linear code over a ternary alphabet; the relative distan ...
. In fact M12 has two inequivalent actions on 12 points, exchanged by an outer automorphism; these are analogous to the two inequivalent actions of the symmetric group ''S''6 on 6 points. The double cover 2.M12 is the automorphism group of the extended
ternary Golay code In coding theory, the ternary Golay codes are two closely related error-correcting codes. The code generally known simply as the ternary Golay code is an 1, 6, 53-code, that is, it is a linear code over a ternary alphabet; the relative distan ...
, a dimension 6 length 12 code over the field of order 3 of minimum weight 6. In particular the double cover has an irreducible 6-dimensional representation over the field of 3 elements. The double cover 2.M12 is the automorphism group of any 12×12
Hadamard matrix In mathematics, a Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. In geometric terms, this means that each pair of rows ...
. M12 centralizes an element of order 11 in the
monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    24632059761121331719232931414759 ...
, as a result of which it acts naturally on a
vertex algebra In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven usefu ...
over the field with 11 elements, given as the
Tate cohomology In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were introduced by , and are used in class field theory. Defin ...
of the
monster vertex algebra The monster vertex algebra (or moonshine module) is a vertex algebra acted on by the monster group that was constructed by Igor Frenkel, James Lepowsky, and Arne Meurman. R. Borcherds used it to prove the monstrous moonshine conjectures, by ap ...
.


Maximal subgroups

There are 11 conjugacy classes of maximal subgroups of M12, 6 occurring in automorphic pairs, as follows: * M11, order 7920, index 12. There are two classes of maximal subgroups, exchanged by an outer automorphism. One is the subgroup fixing a point with orbits of size 1 and 11, while the other acts transitively on 12 points. * S6:2 = M10.2, the outer automorphism group of the symmetric group S6 of order 1440, index 66. There are two classes of maximal subgroups, exchanged by an outer automorphism. One is imprimitive and transitive, acting with 2 blocks of 6, while the other is the subgroup fixing a pair of points and has orbits of size 2 and 10. * PSL(2,11), order 660, index 144, doubly transitive on the 12 points * 32:(2.S4), order 432. There are two classes of maximal subgroups, exchanged by an outer automorphism. One acts with orbits of 3 and 9, and the other is imprimitive on 4 sets of 3. : Isomorphic to the affine group on the space C3 x C3. * S5 x 2, order 240, doubly imprimitive on 6 sets of 2 points : Centralizer of a sextuple transposition * Q:S4, order 192, orbits of 4 and 8. : Centralizer of a quadruple transposition * 42:(2 x S3), order 192, imprimitive on 3 sets of 4 * A4 x S3, order 72, doubly imprimitive, 4 sets of 3 points.


Conjugacy classes

The cycle shape of an element and its conjugate under an outer automorphism are related in the following way: the union of the two cycle shapes is balanced, in other words invariant under changing each ''n''-cycle to an ''N''/''n'' cycle for some integer ''N''.


References

* * * * * * Reprinted in * * * * * * * * * * * * * * *


External links


MathWorld: Mathieu Groups

Atlas of Finite Group Representations: M12
{{DEFAULTSORT:Mathieu Group M12 Sporadic groups