HOME

TheInfoList



OR:

An exotic atom is an otherwise normal
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
in which one or more sub-atomic particles have been replaced by other particles of the same
charge Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqua ...
. For example,
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s may be replaced by other negatively charged particles such as
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
s (muonic atoms) or
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s (pionic atoms).Exotic atoms
, AccessScience, McGraw-Hill. accessdate=September 26, 2007.
Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.


Muonic atoms

In a ''muonic atom'' (previously called a ''mu-mesic'' atom, now known to be a misnomer as muons are not
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles ...
s), an electron is replaced by a muon, which, like the electron, is a
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
. Since
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
s are only sensitive to
weak Weak may refer to: Songs * "Weak" (AJR song), 2016 * "Weak" (Melanie C song), 2011 * "Weak" (SWV song), 1993 * "Weak" (Skunk Anansie song), 1995 * "Weak", a song by Seether from '' Seether: 2002-2013'' Television episodes * "Weak" (''Fear t ...
,
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
and
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
forces, muonic atoms are governed to very high precision by the electromagnetic interaction. Since a muon is more massive than an electron, the Bohr orbits are closer to the nucleus in a muonic atom than in an ordinary atom, and corrections due to
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
are more important. Study of muonic atoms'
energy level A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The te ...
s as well as transition rates from
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to a ...
s to the
ground state The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
therefore provide experimental tests of quantum electrodynamics.
Muon-catalyzed fusion Muon-catalyzed fusion (abbreviated as μCF or MCF) is a process allowing nuclear fusion to take place at temperatures significantly lower than the temperatures required for thermonuclear fusion, even at room temperature or lower. It is one of the f ...
is a technical application of muonic atoms.


Muonic helium (Hydrogen-4.1)

The symbol 4.1H (Hydrogen-4.1) has been used to describe the exotic atom muonic helium (4He-μ), which is like
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consis ...
in having 2
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and 2
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s. However one of its
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s is replaced by a
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
, which also has charge –1. Because the muon's orbital radius is less than 1/200th the electron's orbital radius (due to the mass ratio), the muon can be considered as a part of the nucleus. The atom then has a
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
with 2 protons, 2 neutrons and 1 muon, with total nuclear charge +1 (from 2 protons and 1 muon) and only one electron outside, so that it is effectively an isotope of hydrogen instead of an isotope of helium. A muon's weight is approximately 0.1 Da so the isotopic mass is 4.1. Since there is only one electron outside the nucleus, the hydrogen-4.1 atom can react with other atoms. Its chemical behavior is that of a hydrogen atom and not a noble helium atom. The only radioactive part of the atom is the muon. Therefore, the atom decays with the muon's half-life, 1.52 microseconds (1.52×10−6 seconds).


Hadronic atoms

A ''hadronic atom'' is an atom in which one or more of the orbital electrons are replaced by a negatively charged
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
. Possible hadrons include mesons such as the
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
or
kaon KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Information Technologies in Karlsruhe. Its first incarnation was developed in 2002 and supported an enhanced version of ...
, yielding a ''pionic atom'' or a ''kaonic atom'' (see
Kaonic hydrogen Kaonic hydrogen is an exotic atom consisting of a negatively charged kaon orbiting a proton. Such particles were first identified, through their X-ray spectrum, at the KEK proton synchrotron in Tsukuba, Japan in 1997. More detailed studies have be ...
), collectively called ''mesonic atoms'';
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exist ...
s, yielding an ''antiprotonic atom''; and the particle, yielding a or ''sigmaonic atom''.The strange world of the exotic atom
Roger Barrett, Daphne Jackson and Habatwa Mweene, ''New Scientist'', August 4, 1990. accessdate=September 26, 2007.
Unlike leptons, hadrons can interact via the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
, so the orbitals of hadronic atoms are influenced by
nuclear force The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucle ...
s between the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
and the hadron. Since the strong force is a short-range interaction, these effects are strongest if the atomic orbital involved is close to the nucleus, when the energy levels involved may broaden or disappear because of the absorption of the hadron by the nucleus. Hadronic atoms, such as pionic hydrogen and
kaonic hydrogen Kaonic hydrogen is an exotic atom consisting of a negatively charged kaon orbiting a proton. Such particles were first identified, through their X-ray spectrum, at the KEK proton synchrotron in Tsukuba, Japan in 1997. More detailed studies have be ...
, thus provide experimental probes of the theory of strong interactions,
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
.


Onium

An ''onium'' (plural: ''onia'') is the bound state of a particle and its antiparticle. The classic onium is
positronium Positronium (Ps) is a system consisting of an electron and its antimatter, anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two parti ...
, which consists of an electron and a positron bound together as a
metastable In chemistry and physics, metastability denotes an intermediate Energy level, energetic state within a dynamical system other than the system's ground state, state of least energy. A ball resting in a hollow on a slope is a simple example of me ...
state, with a relatively long lifetime of 142 ns in the triplet state. Positronium has been studied since the 1950s to understand bound states in quantum field theory. A recent development called
non-relativistic quantum electrodynamics Non-relativistic quantum electrodynamics (NRQED) is a low energy approximation of quantum electrodynamics which describes the interaction of (non-relativistic, i.e. moving at speeds much smaller than the speed of light) spin one-half particles (e.g ...
(NRQED) used this system as a proving ground.
Pionium Pionium is a composite particle consisting of one and one meson. It can be created, for instance, by interaction of a proton beam accelerated by a particle accelerator and a target nucleus. Pionium has a short lifetime, predicted by chiral pertur ...
, a bound state of two oppositely-charged
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s, is useful for exploring the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
. This should also be true of
protonium Protonium (symbol: Pn), also known as antiprotonic hydrogen, is a type of exotic atom in which a proton (symbol: p) and an antiproton (symbol: ) orbit each other. Since protonium is a bound system of a particle and its corresponding antipartic ...
, which is a proton–antiproton bound state. Understanding bound states of pionium and protonium is important in order to clarify notions related to
exotic hadron Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or ...
s such as
mesonic molecules A mesonic molecule is a set of two or more mesons bound together by the strong force. Unlike baryonic molecules, which form the nuclei of all elements in nature save hydrogen-1, a mesonic molecule has yet to be definitively observed. The X(3872) di ...
and
pentaquark A pentaquark is a human-made subatomic particle, consisting of four quarks and one antiquark bound together; they are not known to occur naturally, or exist outside of experiments specifically carried out to create them. As quarks have a baryon ...
states.
Kaonium Kaonium is an exotic atom consisting of a bound state of a positively charged and a negatively charged kaon KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Informatio ...
, which is a bound state of two oppositely charged kaons, has not been observed experimentally yet. The true analogs of positronium in the theory of strong interactions, however, are not exotic atoms but certain
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles ...
s, the ''
quarkonium In particle physics, quarkonium (from quark and -onium, pl. quarkonia) is a flavorless meson whose constituents are a heavy quark and its own antiquark, making it both a neutral particle and its own antiparticle. Light quarks Light quarks ( up ...
states'', which are made of a heavy quark such as the
charm Charm may refer to: Social science * Charisma, a person or thing's pronounced ability to attract others * Superficial charm, flattery, telling people what they want to hear Science and technology * Charm quark, a type of elementary particle * Ch ...
or
bottom quark The bottom quark or b quark, also known as the beauty quark, is a third-generation heavy quark with a charge of −  ''e''. All quarks are described in a similar way by electroweak and quantum chromodynamics, but the bottom quark has exc ...
and its antiquark. (
Top quark The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard ...
s are so heavy that they decay through the
weak force Weak may refer to: Songs * "Weak" (AJR song), 2016 * "Weak" (Melanie C song), 2011 * "Weak" (SWV song), 1993 * "Weak" (Skunk Anansie song), 1995 * "Weak", a song by Seether from '' Seether: 2002-2013'' Television episodes * "Weak" (''Fear t ...
before they can form bound states.) Exploration of these states through non-relativistic quantum chromodynamics (NRQCD) and
lattice QCD Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the ...
are increasingly important tests of
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
.
Muonium Muonium is an exotic atom made up of an antimuon and an electron, which was discovered in 1960 by Vernon W. Hughes and is given the chemical symbol Mu. During the muon's lifetime, muonium can undergo chemical reactions. Due to the mass diffe ...
, despite its name, is ''not'' an onium containing a muon and an antimuon, because IUPAC assigned that name to the system of an antimuon bound with an electron. However, the production of a muon–antimuon bound state, which ''is'' an onium (called
true muonium In particle physics, true muonium is a theoretically predicted exotic atom representing a bound state of an muon and an antimuon (μ+μ−). The existence of true muonium is well established theoretically within the Standard Model. Its propert ...
), has been theorized.


Hypernuclear atoms

Atoms may be composed of electrons orbiting a
hypernucleus A hypernucleus is similar to a conventional atomic nucleus, but contains at least one hyperon in addition to the normal protons and neutrons. Hyperons are a category of baryon particles that carry non-zero strangeness quantum number, which is con ...
that includes
strange Strange may refer to: Fiction * Strange (comic book), a comic book limited series by Marvel Comics * Strange (Marvel Comics), one of a pair of Marvel Comics characters known as The Strangers * Adam Strange, a DC Comics superhero * The title char ...
particles called
hyperon In particle physics, a hyperon is any baryon containing one or more strange quarks, but no charm, bottom, or top quark. This form of matter may exist in a stable form within the core of some neutron stars. Hyperons are sometimes generically repr ...
s. Such hypernuclear atoms are generally studied for their nuclear behaviour, falling into the realm of
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
rather than
atomic physics Atomic physics is the field of physics that studies atoms as an isolated system of electrons and an atomic nucleus. Atomic physics typically refers to the study of atomic structure and the interaction between atoms. It is primarily concerned wit ...
.


Quasiparticle atoms

In
condensed matter Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the su ...
systems, specifically in some
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s, there are states called
exciton An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force. It is an electrically neutral quasiparticle that exists in insulators, semiconductors and some liquids. The ...
s, which are bound states of an electron and an
electron hole In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle which is the lack of an electron at a position where one could exist in an atom or atomic lattice. Since in a normal atom or ...
.


Exotic molecules

An exotic molecule contains one or more exotic atoms. *
Di-positronium Di-positronium, or dipositronium, is an exotic molecule consisting of two atoms of positronium. It was predicted to exist in 1946 by John Archibald Wheeler, and subsequently studied theoretically, but was not observed until 2007 in an experiment p ...
, two bound positronium atoms *
Positronium hydride Positronium hydride, or hydrogen positride is an exotic molecule consisting of a hydrogen atom bound to an exotic atom of positronium (that is a combination of an electron and a positron). Its formula is PsH. It was predicted to exist in 1951 by A ...
, a positronium atom bound to a hydrogen atom "Exotic molecule" can also refer to a molecule having some other uncommon property such as a pyramidal hexamethylbenzene#Dication and a
Rydberg atom A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number, ''n''. The higher the value of ''n'', the farther the electron is from the nucleus, on average. Rydberg atoms have a number of peculia ...
.


See also


References

{{Authority control Quantum chromodynamics