HOME

TheInfoList



OR:

Singmaster's conjecture is a
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1 ...
in
combinatorial number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathe ...
, named after the British mathematician
David Singmaster David Breyer Singmaster (born 1938) is an emeritus professor of mathematics at London South Bank University, England. A self-described metagrobologist, he has a huge personal collection of mechanical puzzles and books of brain teasers. He is m ...
who proposed it in 1971. It says that there is a finite
upper bound In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of . Dually, a lower bound or minorant of is defined to be an elem ...
on the multiplicities of entries in
Pascal's triangle In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, althoug ...
(other than the number 1, which appears infinitely many times). It is clear that the only number that appears infinitely many times in
Pascal's triangle In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, althoug ...
is 1, because any other number ''x'' can appear only within the first ''x'' + 1 rows of the triangle.


Stat