HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the
invertible In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers. Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field ''F'', the group is , where 0 refers to the zero element of ''F'' and the
binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation ...
• is the field
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, *the algebraic torus GL(1).


Examples

*The multiplicative group of integers modulo ''n'' is the group under multiplication of the invertible elements of \mathbb/n\mathbb. When ''n'' is not prime, there are elements other than zero that are not invertible. * The multiplicative group of positive real numbers \mathbb^+ is an abelian group with 1 its
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
. The
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
is a group isomorphism of this group to the additive group of real numbers, \mathbb. * The multiplicative group of a field F is the set of all nonzero elements: F^\times = F -\, under the multiplication operation. If F is finite of order ''q'' (for example ''q'' = ''p'' a prime, and F = \mathbb F_p=\mathbb Z/p\mathbb Z), then the multiplicative group is cyclic: F^\times \cong C_.


Group scheme of roots of unity

The group scheme of ''n''-th roots of unity is by definition the kernel of the ''n''-power map on the multiplicative group GL(1), considered as a
group scheme In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups hav ...
. That is, for any integer ''n'' > 1 we can consider the morphism on the multiplicative group that takes ''n''-th powers, and take an appropriate fiber product of schemes, with the morphism ''e'' that serves as the identity. The resulting group scheme is written μ''n'' (or \mu\!\!\mu_n). It gives rise to a reduced scheme, when we take it over a field ''K'',
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
the characteristic of ''K'' does not divide ''n''. This makes it a source of some key examples of non-reduced schemes (schemes with nilpotent elements in their structure sheaves); for example μ''p'' over a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
with ''p'' elements for any
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
''p''. This phenomenon is not easily expressed in the classical language of algebraic geometry. For example, it turns out to be of major importance in expressing the duality theory of abelian varieties in characteristic ''p'' (theory of Pierre Cartier). The Galois cohomology of this group scheme is a way of expressing Kummer theory.


See also

* Multiplicative group of integers modulo n * Additive group


Notes


References

* Michiel Hazewinkel, Nadiya Gubareni, Nadezhda Mikhaĭlovna Gubareni, Vladimir V. Kirichenko. ''Algebras, rings and modules''. Volume 1. 2004. Springer, 2004. {{DEFAULTSORT:Multiplicative Group Algebraic structures Group theory Field (mathematics)