HOME

TheInfoList



OR:

In
decision theory Decision theory (or the theory of choice; not to be confused with choice theory) is a branch of applied probability theory concerned with the theory of making decisions based on assigning probabilities to various factors and assigning numerical ...
, a multi-attribute utility function is used to represent the preferences of an agent over bundles of goods either under conditions of certainty about the results of any potential choice, or under conditions of uncertainty.


Preliminaries

A person has to decide between two or more options. The decision is based on the ''attributes'' of the options. The simplest case is when there is only one attribute, e.g.: money. It is usually assumed that all people prefer more money to less money; hence, the problem in this case is trivial: select the option that gives you more money. In reality, there are two or more attributes. For example, a person has to select between two employment options: option A gives him $12K per month and 20 days of vacation, while option B gives him $15K per month and only 10 days of vacation. The person has to decide between (12K,20) and (15K,10). Different people may have different preferences. Under certain conditions, a person's preferences can be represented by a numeric function. The article
ordinal utility In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask ...
describes some properties of such functions and some ways by which they can be calculated. Another consideration that might complicate the decision problem is ''uncertainty''. Although there are at least four sources of uncertainty - the attribute outcomes, and a decisionmaker's fuzziness about: a) the specific shapes of the individual attribute utility functions, b) the aggregating constants' values, and c) whether the attribute utility functions are additive, these terms being addressed presently - uncertainty henceforth means only randomness in attribute levels. This uncertainty complication exists even when there is a single attribute, e.g.: money. For example, option A might be a lottery with 50% chance to win $2, while option B is to win $1 for sure. The person has to decide between the lottery <2:0.5> and the lottery <1:1>. Again, different people may have different preferences. Again, under certain conditions the preferences can be represented by a numeric function. Such functions are called cardinal utility functions. The article Von Neumann–Morgenstern utility theorem describes some ways by which they can be calculated. The most general situation is that there are ''both'' multiple attributes ''and'' uncertainty. For example, option A may be a lottery with a 50% chance to win two apples and two bananas, while option B is to win two bananas for sure. The decision is between <(2,2):(0.5,0.5)> and <(2,0):(1,0)>. The preferences here can be represented by cardinal utility functions which take several variables (the attributes). Such functions are the focus of the current article. The goal is to calculate a utility function u(x_1,...,x_n) which represents the person's preferences on lotteries of bundles. I.e, lottery A is preferred over lottery B if and only if the expectation of the function u is higher under A than under B: :E_A (x_1,...,x_n)> E_B (x_1,...,x_n)/math>


Assessing a multi-attribute cardinal utility function

If the number of possible bundles is finite, ''u'' can be constructed directly as explained by von Neumann and Morgenstern (VNM): order the bundles from least preferred to most preferred, assign utility 0 to the former and utility 1 to the latter, and assign to each bundle in between a utility equal to the probability of an equivalent lottery. If the number of bundles is infinite, one option is to start by ignoring the randomness, and assess an
ordinal utility In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask ...
function v(x_1,...,x_n) which represents the person's utility on ''sure'' bundles. I.e, a bundle x is preferred over a bundle y if and only if the function v is higher for x than for y: :v(x_1,...,x_n) > v(y_1,...,y_n) This function, in effect, converts the multi-attribute problem to a single-attribute problem: the attribute is v. Then, VNM can be used to construct the function u. Note that ''u'' must be a positive monotone transformation of ''v''. This means that there is a monotonically increasing function r: \mathbb\to \mathbb, such that: :u(x_1,...,x_n) = r(v(x_1,...,x_n)) The problem with this approach is that it is not easy to assess the function ''r''. When assessing a single-attribute cardinal utility function using VNM, we ask questions such as: "What probability to win $2 is equivalent to $1?". So to assess the function ''r'', we have to ask a question such as: "What probability to win 2 units of value is equivalent to 1 value?". The latter question is much harder to answer than the former, since it involves "value", which is an abstract quantity. A possible solution is to calculate ''n'' one-dimensional cardinal utility functions - one for each attribute. For example, suppose there are two attributes: apples (x_1) and bananas (x_2), both range between 0 and 99. Using VNM, we can calculate the following 1-dimensional utility functions: * u(x_1,0) - a cardinal utility on apples when there are no bananas (the southern boundary of the domain); * u(99,x_2) - a cardinal utility on bananas when apples are at their maximum (the eastern boundary of the domain). Using linear transformations, scale the functions such that they have the same value on (99,0). Then, for every bundle (x_1',x_2'), find an equivalent bundle (a bundle with the same ''v'') which is either of the form (x_1,0) or of the form (99,x_2), and set its utility to the same number. Often, certain ''independence'' properties between attributes can be used to make the construction of a utility function easier.


Additive independence

The strongest independence property is called ''additive independence''. Two attributes, 1 and 2, are called ''additive independent'', if the preference between two lotteries (defined as joint probability distributions on the two attributes) depends only on their marginal probability distributions (the marginal PD on attribute 1 and the marginal PD on attribute 2). This means, for example, that the following two lotteries are equivalent: * L: An equal-chance lottery between (x_1,x_2) and (y_1,y_2); * M: An equal-chance lottery between (x_1,y_2) and (y_1,x_2). In both these lotteries, the marginal PD on attribute 1 is 50% for x_1 and 50% for y_1. Similarly, the marginal PD on attribute 2 is 50% for x_2 and 50% for y_2. Hence, if an agent has additive-independent utilities, he must be indifferent between these two lotteries. A fundamental result in utility theory is that, two attributes are additive-independent, if and only if their two-attribute utility function is additive and has the form: ::::u(x_1,x_2)=u_1(x_1) + u_2(x_2) PROOF: \longrightarrow If the attributes are additive-independent, then the lotteries L and M, defined above, are equivalent. This means that their expected utility is the same, i.e.: E_L E_M /math>. Multiplying by 2 gives: :u(x_1,x_2)+u(y_1,y_2)=u(x_1,y_2)+u(y_1,x_2) This is true for ''any'' selection of the x_i and y_i. Assume now that y_1 and y_2 are fixed. Arbitrarily set u(y_1,y_2)=0. Write: u_1(x_1) = u(x_1,y_2) and u_2(x_2) = u(y_1,x_2). The above equation becomes: :u(x_1,x_2) = u_1(x_1)+u_2(x_2) \longleftarrow If the function ''u'' is additive, then by the rules of expectation, for every lottery L: :E_L
(x_1,x_2) X, or x, is the twenty-fourth and third-to-last letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''"ex"'' (pronounced ) ...
= E_L
_1(x_1) 1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length  ...
+ E_L
_2(x_2) 2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cu ...
/math> This expression depends only on the marginal probability distributions of L on the two attributes. This result generalizes to any number of attributes: iff preferences over lotteries on attributes 1,...,''n'' depend only on their marginal probability distributions, then the ''n''-attribute utility function is additive: ::::u(x_1,\dots,x_n) = \sum_^n where u and the u_i are normalized to the range ,1/math>, and the k_i are normalization constants. Much of the work in additive utility theory has been done by
Peter C. Fishburn Peter Clingerman Fishburn (September 2, 1936 – June 10, 2021) was an American mathematician, known as a pioneer in the field of decision theory. In collaboration with Steven Brams, Fishburn published a paper about approval voting in 1978. Bi ...
.


Utility independence

A slightly weaker independence property is ''utility independence''. Attribute 1 is ''utility-independent'' of attribute 2, if the conditional preferences on lotteries on attribute 1 given a constant value of attribute 2, do not depend on that constant value. This means, for example, that the preference between a lottery <(x_1,x_2):(y_1,x_2)> and a lottery <(x'_1,x_2):(y'_1,x_2)> is the same, regardless of the value of x_2. Note that utility independence (in contrast to additive independence) is ''not'' symmetric: it is possible that attribute 1 is utility-independent of attribute 2 and not vice versa. If attribute 1 is utility-independent of attribute 2, then the utility function for every value of attribute 2 is a linear transformation of the utility function for every other value of attribute 2. Hence it can be written as: :u(x_1,x_2)=c_1(x_2)+c_2(x_2)\cdot u(x_1,x_2^0) when x_2^0 is a constant value for attribute 2. Similarly, If attribute 2 is utility-independent of attribute 1: :u(x_1,x_2)=d_1(x_1)+d_2(x_1)\cdot u(x_1^0,x_2) If the attributes are ''mutually utility independent'', then the utility function ''u'' has the following ''multi-linear form'': :u(x_1,x_2)=u_1(x_1)+u_2(x_2)+k\cdot u_1(x_1)\cdot u_2(x_2) Where k is a constant which can be positive, negative or 0. * When k=0, the function ''u'' is additive and the attributes are additive-independent. * When k\neq 0, the utility function is multiplicative, since it can be written as: : u(x_1,x_2)+1 u_1(x_1)+1\cdot u_2(x_2)+1/math> :where each term is a linear transformation k\cdot+1 of a utility function. These results can be generalized to any number of attributes. Given attributes 1,...,''n'', if any subset of the attributes is utility-independent of its complement, then the ''n''-attribute utility function is multi-linear and has one of the following forms: * Additive, or - * Multiplicative: ::::1 + k u(x_1,\dots,x_n) = \prod_^n where: * The u and the u_i are normalized to the range ,1/math>; * The k_i are constants in ,1/math>; * k is a constant which is either in (-1,0) or in (0,\infty) (note that the limit when k\to 0 is the additive form).


Comparison of independence concepts

It is useful to compare three different concepts related to independence of attributes: Additive-independence (AI), Utility-independence (UI) and Preference-independence (PI). AI and UI both concern preferences on ''lotteries'' and are explained above. PI concerns preferences on ''sure outcomes'' and is explained in the article on
ordinal utility In economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask ...
. Their implication order is as follows: :::AI ⇒ UI ⇒ PI AI is a symmetric relation (if attribute 1 is AI of attribute 2 then attribute 2 is AI of attribute 1), while UI and PI are not. AI implies mutual UI. The opposite is, in general, not true; it is true only if k=0 in the multi-linear formula for UI attributes. But if, in addition to mutual UI, there exist x_1,x_2,y_1,y_2 for which the two lotteries L and M, defined above, are equivalent - then k must be 0, and this means that the preference relation must be AI. UI implies PI. The opposite is, in general, not true. But if: * there are at least 3 essential attributes, and: * all pairs of attributes are PI of their complement, and: * attribute 1 is UI of its complement, then all attributes are mutually UI. Moreover, in that case there is a simple relation between the cardinal utility function u representing the preferences on lotteries, and the ordinal utility function v representing the preferences on sure bundles. The function u must have one of the following forms:This idea is attributed to
Richard F. Meyer Richard is a male given name. It originates, via Old French, from Old Frankish and is a compound of the words descending from Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'str ...
and John W. Pratt.
* Additive: u(x_1,...,x_n) = v(x_1,...,x_n) * Multiplicative: u(x_1,...,x_n) = xp(R\cdot v(x_1,...,x_n))-1
xp(R)-1 XP may refer to: Medicine * Xanthelasma palpebrarum, a cholesterol deposit in the eyelid * Xeroderma pigmentosum, a genetic disorder Computing * Windows XP, an operating system * Microsoft Office XP, a version of the software suite * Athlon ...
/math> where R\neq 0. PROOF: It is sufficient to prove that ''u'' has constant absolute risk aversion with respect to the value ''v''. * The PI assumption with n\geq 3 imply that the value function is additive, i.e.: ::::v(x_1,\dots,x_n)=\sum_^ * Let x_1, z_1 be two different values for attribute 1. Let y_1 be the certainty-equivalent of the lottery . The UI assumption implies that, for every combination (w_2,\dots,w_n) of values of the other attributes, the following equivalence holds: ::::(y_1,w)\sim<(x_1,w):(z_1,w)> * The two previous statements imply that for every ''w'', the following equivalence holds in the value space: ::::\lambda_1 v_1(y_1) + \sum_^n \sim <\lambda_1 v_1(x_1) + \sum_^n : \lambda_1 v_1(z_1) + \sum_^n> * This implies that, adding any quantity to both sides of a lottery (through the term \sum_^n), increases the certainty-equivalent of the lottery by the same quantity. * The latter fact implies constant risk aversion.


See also

* Multi-attribute auction *
Multi-objective optimization Multi-objective optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, multiattribute optimization or Pareto optimization) is an area of multiple criteria decision making that is concerned with ...
* Decision-making software


References

{{reflist, refs = {{Cite book, isbn=0-521-44185-4, title=Decisions with Multiple Objectives, last1=Keeney, last2=Raiffa, first2=Howard, first1=Ralph L., year=1993 Expected utility