HOME

TheInfoList



OR:

In mathematics, a Malcev algebra (or Maltsev algebra or Moufang
Lie A lie is an assertion that is believed to be false, typically used with the purpose of deception, deceiving or Deception, misleading someone. The practice of communicating lies is called lying. A person who communicates a lie may be termed a l ...
algebra) over a field is a
nonassociative algebra A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure ''A'' is a non-associative algebra over a field ''K'' if ...
that is antisymmetric, so that :xy = -yx and satisfies the Malcev identity :(xy)(xz) = ((xy)z)x + ((yz)x)x + ((zx)x)y. They were first defined by
Anatoly Maltsev Anatoly Ivanovich Maltsev (also: Malcev, Mal'cev; Russian: Анато́лий Ива́нович Ма́льцев; 27 November N.S./14 November O.S. 1909, Moscow Governorate – 7 June 1967, Novosibirsk) was born in Misheronsky, near Moscow, and ...
(1955). Malcev algebras play a role in the theory of
Moufang loop Moufang is the family name of the following people: * Christoph Moufang (1817–1890), a Roman Catholic cleric * Ruth Moufang (1905–1977), a German mathematician, after whom several concepts in mathematics are named: ** Moufang–Lie algebra ** ...
s that generalizes the role of
Lie algebras In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi iden ...
in the theory of
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
s. Namely, just as the tangent space of the identity element of a
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addit ...
forms a Lie algebra, the tangent space of the identity of a smooth Moufang loop forms a Malcev algebra. Moreover, just as a Lie group can be recovered from its Lie algebra under certain supplementary conditions, a smooth Moufang loop can be recovered from its Malcev algebra if certain supplementary conditions hold. For example, this is true for a connected, simply connected real-analytic Moufang loop.


Examples

*Any
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi iden ...
is a Malcev algebra. *Any
alternative algebra In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have *x(xy) = (xx)y *(yx)x = y(xx) for all ''x'' and ''y'' in the algebra. Every associative algebra is ...
may be made into a Malcev algebra by defining the Malcev product to be ''xy'' − ''yx''. *The 7-sphere may be given the structure of a smooth Moufang loop by identifying it with the unit octonions. The tangent space of the identity of this Moufang loop may be identified with the 7-dimensional space of imaginary octonions. The imaginary octonions form a Malcev algebra with the Malcev product ''xy'' − ''yx''.


See also

* Malcev-admissible algebra


Notes


References

* * * Non-associative algebras Lie algebras {{algebra-stub