HOME

TheInfoList



OR:

In
theoretical computer science computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the ...
, circuit complexity is a branch of
computational complexity theory In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved ...
in which
Boolean function In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually , or ). Alternative names are switching function, used especially in older computer science literature, and truth function ...
s are classified according to the size or depth of the
Boolean circuit In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible inp ...
s that compute them. A related notion is the circuit complexity of a
recursive language In mathematics, logic and computer science, a formal language (a set of finite sequences of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the ...
that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class
P/poly In computational complexity theory, P/poly is a complexity class representing problems that can be solved by small circuits. More precisely, it is the set of formal languages that have polynomial-size circuit families. It can also be defined equiva ...
consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below).
Complexity class In computational complexity theory, a complexity class is a set (mathematics), set of computational problems of related resource-based computational complexity, complexity. The two most commonly analyzed resources are time complexity, time and spa ...
es defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and
P/poly In computational complexity theory, P/poly is a complexity class representing problems that can be solved by small circuits. More precisely, it is the set of formal languages that have polynomial-size circuit families. It can also be defined equiva ...
.


Size and depth

A Boolean circuit with n input
bit The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represente ...
s is a
directed acyclic graph In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one v ...
in which every node (usually called ''gates'' in this context) is either an input node of
in-degree In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pai ...
0 labelled by one of the n input bits, an
AND gate The AND gate is a basic digital logic gate that implements logical conjunction (∧) from mathematical logic AND gate behaves according to the truth table. A HIGH output (1) results only if all the inputs to the AND gate are HIGH (1). If not al ...
, an
OR gate The OR gate is a digital logic gate that implements logical disjunction. The OR gate returns true if either or both of its inputs are true; otherwise it returns false. The input and output states are normally represented by different voltage lev ...
, or a NOT gate. One of these gates is designated as the output gate. Such a circuit naturally computes a function of its n inputs. The size of a circuit is the number of gates it contains and its depth is the maximal length of a path from an input gate to the output gate. There are two major notions of circuit complexity The circuit-size complexity of a Boolean function f is the minimal size of any circuit computing f. The circuit-depth complexity of a Boolean function f is the minimal depth of any circuit computing f. These notions generalize when one considers the circuit complexity of any language that contains strings with different bit lengths, especially infinite
formal language In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of sy ...
s. Boolean circuits, however, only allow a fixed number of input bits. Thus, no single Boolean circuit is capable of deciding such a language. To account for this possibility, one considers families of circuits C_,C_,\ldots where each C_ accepts inputs of size n. Each circuit family will naturally generate the language by circuit C_ outputting 1 when a length n string is a member of the family, and 0 otherwise. We say that a family of circuits is size minimal if there is no other family that decides on inputs of any size, n, with a circuit of smaller size than C_n (respectively for depth minimal families). Thus, circuit complexity is meaningful even for non-recursive languages. The notion of a uniform family enables variants of circuit complexity to be related to algorithm based complexity measures of recursive languages. However, the non-uniform variant is helpful to find lower bounds on how complex any circuit family must be in order to decide given languages. Hence, the circuit-size complexity of a formal language A is defined as the function t:\mathbb\to\mathbb, that relates a bit length of an input, n, to the circuit-size complexity of a minimal circuit C_ that decides whether inputs of that length are in A. The circuit-depth complexity is defined similarly.


Uniformity

Boolean circuits are one of the prime examples of so-called non-uniform
models of computation In computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how ...
in the sense that inputs of different lengths are processed by different circuits, in contrast with uniform models such as
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
s where the same computational device is used for all possible input lengths. An individual
computational problem In theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring :"Given a positive integer ''n'', find a nontrivial prime factor of ''n''." is a computational probl ...
is thus associated with a particular ''family'' of Boolean circuits C_1, C_2, \dots where each C_n is the circuit handling inputs of ''n'' bits. A ''uniformity'' condition is often imposed on these families, requiring the existence of some possibly resource-bounded Turing machine that, on input ''n'', produces a description of the individual circuit C_n. When this Turing machine has a running time polynomial in ''n'', the circuit family is said to be P-uniform. The stricter requirement of
DLOGTIME In computational complexity theory, DLOGTIME is the complexity class of all computational problems solvable in a logarithmic amount of computation time on a deterministic Turing machine. It must be defined on a random-access Turing machine, since ...
-uniformity is of particular interest in the study of shallow-depth circuit-classes such as AC0 or TC0. When no resource bounds are specified, a language is recursive (i.e., decidable by a Turing machine) if and only if the language is decided by a uniform family of Boolean circuits.


Polynomial-time uniform

A family of Boolean circuits \ is ''polynomial-time uniform'' if there exists a deterministic Turing machine ''M'', such that * ''M'' runs in polynomial time * For all n \in \mathbb, ''M'' outputs a description of C_n on input 1^n


Logspace uniform

A family of Boolean circuits \ is ''logspace uniform'' if there exists a deterministic Turing machine ''M'', such that * ''M'' runs in logarithmic space * For all n \in \mathbb, ''M'' outputs a description of C_n on input 1^n


History

Circuit complexity goes back to Shannon in 1949, who proved that almost all Boolean functions on ''n'' variables require circuits of size Θ(2''n''/''n''). Despite this fact, complexity theorists have so far been unable to prove a superlinear lower bound for any explicit function. Superpolynomial lower bounds have been proved under certain restrictions on the family of circuits used. The first function for which superpolynomial circuit lower bounds were shown was the
parity function In Boolean algebra, a parity function is a Boolean function whose value is one if and only if the input vector has an odd number of ones. The parity function of two inputs is also known as the XOR function. The parity function is notable for its r ...
, which computes the sum of its input bits modulo 2. The fact that parity is not contained in AC0 was first established independently by Ajtai in 1983 and by Furst, Saxe and Sipser in 1984. Later improvements by Håstad in 1987 established that any family of constant-depth circuits computing the parity function requires exponential size. Extending a result of Razborov, Smolensky in 1987 proved that this is true even if the circuit is augmented with gates computing the sum of its input bits modulo some odd prime ''p''. The ''k''-clique problem is to decide whether a given graph on ''n'' vertices has a clique of size ''k''. For any particular choice of the constants ''n'' and ''k'', the graph can be encoded in binary using bits, which indicate for each possible edge whether it is present. Then the ''k''-clique problem is formalized as a function f_k:\^\to\ such that f_k outputs 1 if and only if the graph encoded by the string contains a clique of size ''k''. This family of functions is monotone and can be computed by a family of circuits, but it has been shown that it cannot be computed by a polynomial-size family of monotone circuits (that is, circuits with AND and OR gates but without negation). The original result of Razborov in 1985 was later improved to an exponential-size lower bound by Alon and Boppana in 1987. In 2008, Rossman showed that constant-depth circuits with AND, OR, and NOT gates require size \Omega(n^) to solve the ''k''-clique problem even in the average case. Moreover, there is a circuit of size n^ that computes f_k. In 1999, Raz and McKenzie later showed that the monotone NC hierarchy is infinite. The Integer Division Problem lies in uniform TC0.


Circuit lower bounds

Circuit lower bounds are generally difficult. Known results include * Parity is not in nonuniform AC0, proved by Ajtai in 1983 as well as by Furst, Saxe and Sipser in 1984. * Uniform TC0 is strictly contained in PP, proved by Allender. * The classes S, PP and MA/1 (MA with one bit of advice) are not in SIZE(''nk'') for any constant k. * While it is suspected that the nonuniform class ACC0 does not contain the majority function, it was only in 2010 that Williams proved that It is open whether NEXPTIME has nonuniform TC0 circuits. Proofs of circuit lower bounds are strongly connected to derandomization. A proof that \mathsf = \mathsf would imply that either \mathsf \not \subseteq \mathsf or that permanent cannot be computed by nonuniform arithmetic circuits (polynomials) of polynomial size and polynomial degree. In 1997, Razborov and Rudich showed that many known circuit lower bounds for explicit Boolean functions imply the existence of so called natural properties useful against the respective circuit class. On the other hand, natural properties useful against P/poly would break strong pseudorandom generators. This is often interpreted as a "natural proofs" barrier for proving strong circuit lower bounds. In 2016, Carmosino, Impagliazzo, Kabanets and Kolokolova proved that natural properties can be also used to construct efficient learning algorithms.


Complexity classes

Many circuit complexity classes are defined in terms of class hierarchies. For each non-negative integer ''i'', there is a class NCi, consisting of polynomial-size circuits of depth O(\log^i(n)), using bounded fan-in AND, OR, and NOT gates. The union NC of all of these classes is a subject to discussion. By considering unbounded fan-in gates, the classes ACi and AC (which is equal to NC) can be constructed. Many other circuit complexity classes with the same size and depth restrictions can be constructed by allowing different sets of gates.


Relation to time complexity

If a certain language, A, belongs to the time-complexity class \text(t(n)) for some function t:\mathbb\to\mathbb, then A has circuit complexity \mathcal(t(n) \log t(n)). If the Turing Machine that accepts the language is oblivious (meaning that it reads and writes the same memory cells regardless of input), then A has circuit complexity \mathcal(t(n)).


See also

*
Circuit minimization Logic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit de ...


Notes


References


Further reading

* * (xii+457 pages) (NB. At the time an influential textbook on the subject, commonly known as the "Blue Book". Also available fo
download (PDF)
at the
Electronic Colloquium on Computational Complexity The Electronic Colloquium on Computational Complexity (ECCC) is an electronic archive of research papers in computational complexity theory, a branch of computer science.... The intention of the ECCC is to provide a fast publication service interme ...
.) * {{cite web , title=Lecture notes for a course of Uri Zwick on circuit complexity , author-first=Uri , author-last=Zwick , author-link=Uri Zwick , url=http://www.cs.tau.ac.il/~zwick/scribe-boolean.html Computational complexity theory