Monic Polynomial (linear Algebra)
   HOME

TheInfoList



OR:

In
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
, a monic polynomial is a non-zero
univariate polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
(that is, a polynomial in a single variable) in which the
leading coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
(the nonzero coefficient of highest degree) is equal to 1. That is to say, a monic polynomial is one that can be written as :x^n+c_x^+\cdots+c_2x^2+c_1x+c_0, with n \geq 0.


Uses

Monic polynomials are widely used in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
and
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777â ...
, since they produce many simplifications and they avoid divisions and denominators. Here are some examples. Every polynomial is
associated Associated may refer to: *Associated, former name of Avon, Contra Costa County, California * Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associati ...
to a unique monic polynomial. In particular, the
unique factorization In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an ...
property of polynomials can be stated as: ''Every polynomial can be uniquely factorized as the product of its
leading coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
and a product of monic
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted ...
s.''
Vieta's formulas In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta"). Basic formulas A ...
are simpler in the case of monic polynomials: ''The th
elementary symmetric function In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary sym ...
of the
roots A root is the part of a plant, generally underground, that anchors the plant body, and absorbs and stores water and nutrients. Root or roots may also refer to: Art, entertainment, and media * ''The Root'' (magazine), an online magazine focusing ...
of a monic polynomial of degree equals (-1)^ic_, where c_ is the coefficient of the th power of the indeterminate.''
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
of a polynomial by a monic polynomial does not introduce divisions of coefficients. Therefore, it is defined for polynomials with coefficients in a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
.
Algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s are defined as the roots of monic polynomials with integer coefficients.


Properties

Every nonzero
univariate polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
(
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
with a single indeterminate) can be written :c_nx^n + c_x^+ \cdots c_1x +c_0, where c_n,\ldots,c_0 are the coefficients of the polynomial, and the
leading coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
c_n is not zero. By definition, such a polynomial is ''monic'' if c_n=1. A product of polynomials is monic
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
all factors are monic. The "if" condition implies that, the monic polynomials in a univariate
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) ...
over a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
form a
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ...
under polynomial multiplication. Two monic polynomials are
associated Associated may refer to: *Associated, former name of Avon, Contra Costa County, California * Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associati ...
if and only they are equal, since the multiplication of a polynomial by a nonzero constant produces a polynomial with this constant as its leading coefficient.
Divisibility In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
induces a
partial order In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
on monic polynomials. This results almost immediately from the preceding properties.


Polynomial equations

Let P(x) be a
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equation' ...
, where is a
univariate polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
of degree . If one divides all coefficients of by its
leading coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
c_n, one obtains a new polynomial equation that has the same solutions and consists to equate to zero a monic polynomial. For example, the equation :2x^2+3x+1 = 0 is equivalent to the monic equation :x^2+\fracx+\frac=0. When the coefficients are unspecified, or belong to a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
where division does not result into fractions (such as \R, \Complex, or a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
), this reduction to monic equations may provide simplification. On the other hand, as shown by the previous example, when the coefficients are explicit integers, the associated monic polynomial is generally more complicated. Therefore, primitive polynomials are often used instead of monic polynomials when dealing with integer coefficients.


Integral elements

Monic polynomial equations are at the basis of the theory of
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s, and, more generally of
integral element In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a'j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' ...
s. Let be a subring of a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
; this implies that is an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural set ...
. An element of is ''integral'' over if it is a
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the sur ...
of a monic polynomial with coefficients in . A
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
that is integral over the integers is called an
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
. This terminology is motivated by the fact that the integers are exactly the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s that are also algebraic integers. This results from the
rational root theorem In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or theorem) states a constraint on rational solutions of a polynomial equation :a_nx^n+a_x^+\cdots+a_0 = 0 with integer coefficients a_i\in\m ...
, which asserts that, if the rational number \frac pq is a root of a polynomial with integer coefficients, then is a divisor of the leading coefficient; so, if the polynomial is monic, then q=\pm 1, and the number is an integer. Conversely, an integer is a root of the monic polynomial x-a. It can be proved that, if two elements of a field are integral over a subring of , then the sum and the product of these elements are also integral over . It follows that the elements of that are integral over form a ring, called the
integral closure In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a'j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' is ...
of in . An integral domain that equals its integral closure in its
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
is called an
integrally closed domain In commutative algebra, an integrally closed domain ''A'' is an integral domain whose integral closure in its field of fractions is ''A'' itself. Spelled out, this means that if ''x'' is an element of the field of fractions of ''A'' which is a root ...
. These concepts are fundamental in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
. For example, many of the numerous wrong proofs of the
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been k ...
that have been written during more than three centuries were wrong because the authors supposed wrongly that the algebraic integers in an
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
have
unique factorization In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an ...
.


Multivariate polynomials

Ordinarily, the term ''monic'' is not employed for polynomials of several variables. However, a polynomial in several variables may be regarded as a polynomial in one variable with coefficients being polynomials in the other variables. Being ''monic'' depends thus on the choice of one "main" variable. For example, the polynomial :p(x,y) = 2xy^2+x^2-y^2+3x+5y-8 is monic, if considered as a polynomial in with coefficients that are polynomials in : :p(x,y) = x^2 + (2y^2+3) \, x + (-y^2+5y-8); but it is not monic when considered as a polynomial in with coefficients polynomial in : :p(x,y)=(2x-1)\,y^2+5y +(x^2+3x-8). In the context of Gröbner bases, a
monomial order In mathematics, a monomial order (sometimes called a term order or an admissible order) is a total order on the set of all ( monic) monomials in a given polynomial ring, satisfying the property of respecting multiplication, i.e., * If u \leq v and ...
is generally fixed. In this case, a polynomial may be said to be monic, if it has 1 as its leading coefficient (for the monomial order). For every definition, a product of polynomials is monic if and only if all factors are monic, and every polynomial is
associated Associated may refer to: *Associated, former name of Avon, Contra Costa County, California * Associated Hebrew Schools of Toronto, a school in Canada *Associated Newspapers, former name of DMG Media, a British publishing company See also *Associati ...
to exactly one monic polynomial.


Citations


References

* {{refend Polynomials