Molecular Beacons
   HOME

TheInfoList



OR:

Molecular beacons, or molecular beacon probes, are
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
hybridization probe In molecular biology, a hybridization probe (HP) is a fragment of DNA or RNA of usually 15–10000 nucleotide long which can be radioactively or fluorescently labeled. HP can be used to detect the presence of nucleotide sequences in analyzed RNA ...
s that can report the presence of specific nucleic acids in homogenous solutions. Molecular beacons are
hairpin A hairpin or hair pin is a long device used to hold a person's hair in place. It may be used simply to secure long hair out of the way for convenience or as part of an elaborate hairstyle or coiffure. The earliest evidence for dressing the hai ...
-shaped molecules with an internally
quenched In materials science, quenching is the rapid cooling of a workpiece in water, oil, polymer, air, or other fluids to obtain certain material properties. A type of heat treating, quenching prevents undesired low-temperature processes, such as ph ...
fluorophore A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with se ...
whose
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
is restored when they bind to a target nucleic acid sequence. This is a novel non-
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
method for detecting specific sequences of nucleic acids. They are useful in situations where it is either not possible or desirable to isolate the probe-target hybrids from an excess of the hybridization probes.


Molecular beacon probes

A typical molecular beacon probe is 25
nucleotides Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules with ...
long. The middle 15 nucleotides are complementary to the target DNA or RNA and do not base pair with one another, while the five nucleotides at each terminus are complementary to each other rather than to the target DNA. A typical molecular beacon structure can be divided in 4 parts: 1) loop, an 18–30 base pair region of the molecular beacon that is complementary to the target sequence; 2) stem formed by the attachment to both termini of the loop of two short (5 to 7 nucleotide residues) oligonucleotides that are complementary to each other; 3) 5' fluorophore at the 5' end of the molecular beacon, a fluorescent dye is covalently attached; 4) 3' quencher (non fluorescent) dye that is covalently attached to the 3' end of the molecular beacon. When the beacon is in closed loop shape, the quencher resides in proximity to the fluorophore, which results in quenching the fluorescent emission of the latter. If the nucleic acid to be detected is complementary to the strand in the loop, the event of hybridization occurs. The duplex formed between the nucleic acid and the loop is more stable than that of the stem because the former duplex involves more base pairs. This causes the separation of the stem and hence of the fluorophore and the quencher. Once the fluorophore is no longer next to the quencher, illumination of the hybrid with light results in the fluorescent emission. The presence of the emission reports that the event of hybridization has occurred and hence the target nucleic acid sequence is present in the test sample.


Use in Cell Engineering

Fluorogenic signaling oligonucleotide probes were reported for use to detect and isolate cells expressing one or more desired genes, including the production of multigene stable cell lines expressing heteromultimeric epithelial sodium channel (αβγ-ENaC), sodium voltage-gated ion channel 1.7 (NaV1.7-αβ1β2), four unique γ-aminobutyric acid A (GABAA) receptor ion channel subunit combinations α1β3γ2s, α2β3γ2s, α3β3γ2s and α5β3γ2s, cystic fibrosis conductance regulator (CFTR), CFTR-Δ508 and two G-protein coupled receptors (GPCRs).


Synthesis

Molecular beacons are synthetic
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
s whose preparation is well documented. In addition to the conventional set of nucleoside phosphoramidites, the synthesis also requires a solid support derivatized with a quencher and a phosphoramidite building block designed for the attachment of a protected fluorescent dye. The first use of the term molecular beacons, synthesis and demonstration of function was in 1996.


Alternative homogeneous assay technologies

*5'-nuclease TaqMan assay *Exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) probes. *Dual Hybridization (LightCycler®) probes *Scorpions® Probes *LUX (Light Upon Extension) Probes *DNA binding dye assays (e.g., SYBR Green, SYTO9, Melt Doctor, LCGreen Plus, etc.)


Applications

*SNP detection *Real-time nucleic acid detection *Real-time PCR quantification *Allelic discrimination and identification *Multiplex PCR assays *Diagnostic clinical assays


References

{{reflist Biochemistry methods Fluorescence Genetics techniques