In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, in the field of
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
, a modular subgroup is a
subgroup
In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G.
Formally, given a group (mathematics), group under a binary operation  ...
that is a
modular element in the
lattice of subgroups
In mathematics, the lattice of subgroups of a group G is the lattice whose elements are the subgroups of G, with the partial ordering being set inclusion.
In this lattice, the join of two subgroups is the subgroup generated by their union, ...
, where the meet operation is defined by the intersection and the join operation is defined by the subgroup
generated by the union of subgroups.
By the modular property of groups, every
quasinormal subgroup (that is, a subgroup that permutes with all subgroups) is modular. In particular, every
normal subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
is modular.
References
*.
Subgroup properties
{{Group-theory-stub