In
condensed matter physics
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
, Anderson localization (also known as strong localization) is the absence of diffusion of waves in a ''disordered'' medium. This phenomenon is named after the American physicist
P. W. Anderson
Philip Warren Anderson (December 13, 1923 – March 29, 2020) was an American theoretical physicist and Nobel laureate. Anderson made contributions to the theories of localization, antiferromagnetism, symmetry breaking (including a paper in 1 ...
, who was the first to suggest that electron localization is possible in a lattice potential, provided that the degree of
randomness
In common usage, randomness is the apparent or actual lack of pattern or predictability in events. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual rand ...
(disorder) in the lattice is sufficiently large, as can be realized for example in a semiconductor with
impurities or
defects.
Anderson localization is a general wave phenomenon that applies to the transport of electromagnetic waves, acoustic waves, quantum waves, spin waves, etc. This phenomenon is to be distinguished from
weak localization Weak localization is a physical effect which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a ''positive'' correction to the resistivity of a metal or semiconductor. The name emphasizes the fact that ...
, which is the precursor effect of Anderson localization (see below), and from
Mott localization, named after Sir
Nevill Mott
Sir Nevill Francis Mott (30 September 1905 – 8 August 1996) was a British physicist who won the Nobel Prize for Physics in 1977 for his work on the electronic structure of magnetic and disordered systems, especially amorphous semiconductors. ...
, where the transition from metallic to insulating behaviour is ''not'' due to disorder, but to a strong mutual
Coulomb repulsion
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventiona ...
of electrons.
Introduction
In the original Anderson tight-binding model, the evolution of the
wave function
A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements mad ...
''ψ'' on the ''d''-dimensional lattice Z
''d'' is given by the
Schrödinger equation
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ...
:
where the
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
''H'' is given by
:
with ''E''
''j'' random and independent, and potential ''V''(''r'') falling off faster than ''r''
−3 at infinity. For example, one may take ''E''
''j'' uniformly distributed in
minus;''W'', +''W'' and
:
Starting with ''ψ''
0 localised at the origin, one is interested in how fast the probability distribution
diffuses. Anderson's analysis shows the following:
* if ''d'' is 1 or 2 and ''W'' is arbitrary, or if ''d'' ≥ 3 and ''W''/ħ is sufficiently large, then the probability distribution remains localized:
::
:uniformly in ''t''. This phenomenon is called Anderson localization.
* if ''d'' ≥ 3 and ''W''/ħ is small,
:
:where ''D'' is the diffusion constant.
Analysis
The phenomenon of Anderson localization, particularly that of weak localization, finds its origin in the
wave interference
In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive ...
between multiple-scattering paths. In the strong scattering limit, the severe interferences can completely halt the waves inside the disordered medium.
For non-interacting electrons, a highly successful approach was put forward in 1979 by Abrahams ''et al.''
This scaling hypothesis of localization suggests that a disorder-induced
metal-insulator transition (MIT) exists for non-interacting electrons in three dimensions (3D) at zero magnetic field and in the absence of spin-orbit coupling. Much further work has subsequently supported these scaling arguments both analytically and numerically (Brandes ''et al.'', 2003; see Further Reading). In 1D and 2D, the same hypothesis shows that there are no extended states and thus no MIT. However, since 2 is the lower critical dimension of the localization problem, the 2D case is in a sense close to 3D: states are only marginally localized for weak disorder and a small
spin-orbit coupling can lead to the existence of extended states and thus an MIT. Consequently, the localization lengths of a 2D system with potential-disorder can be quite large so that in numerical approaches one can always find a localization-delocalization transition when either decreasing system size for fixed disorder or increasing disorder for fixed system size.
Most numerical approaches to the localization problem use the standard tight-binding Anderson
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
with onsite-potential disorder. Characteristics of the electronic
eigenstates are then investigated by studies of participation numbers obtained by exact diagonalization, multifractal properties, level statistics and many others. Especially fruitful is the
transfer-matrix method
In statistical mechanics, the transfer-matrix method is a mathematical technique which is used to write the partition function into a simpler form. It was introduced in 1941 by Hans Kramers and Gregory Wannier. In many one dimensional lattice m ...
(TMM) which allows a direct computation of the localization lengths and further validates the scaling hypothesis by a numerical proof of the existence of a one-parameter scaling function. Direct numerical solution of Maxwell equations to demonstrate Anderson localization of light has been implemented (Conti and Fratalocchi, 2008).
Recent work has shown that a non-interacting Anderson localized system can become
many-body localized even in the presence of weak interactions. This result has been rigorously proven in 1D, while perturbative arguments exist even for two and three dimensions.
Experimental evidence
Two reports of Anderson localization of light in 3D random media exist up to date (Wiersma ''et al.'', 1997 and Storzer ''et al.'', 2006; see Further Reading), even though absorption complicates interpretation of experimental results (Scheffold ''et al.'', 1999). Anderson localization can also be observed in a perturbed periodic potential where the transverse localization of light is caused by random fluctuations on a photonic lattice. Experimental realizations of transverse localization were reported for a 2D lattice (Schwartz ''et al.'', 2007) and a 1D lattice (Lahini ''et al.'', 2006). Transverse Anderson localization of light has also been demonstrated in an optical fiber medium (Karbasi ''et al.'', 2012) and a biological medium (Choi ''et al.'', 2018), and has also been used to transport images through the fiber (Karbasi ''et al.'', 2014). It has also been observed by localization of a
Bose–Einstein condensate
In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.67&n ...
in a 1D disordered optical potential (Billy ''et al.'', 2008; Roati ''et al.'', 2008). Anderson localization of elastic waves in a 3D disordered medium has been reported (Hu ''et al.'', 2008). The observation of the MIT has been reported in a 3D model with atomic matter waves (Chabé ''et al.'', 2008). The MIT, associated with the nonpropagative electron waves has been reported in a cm sized crystal (Ying ''et al.'', 2016).
Random laser
A random laser (RL) is a laser in which optical feedback is provided by scattering particles. As in conventional lasers, a gain medium is required for optical amplification. However, in contrast to Fabry–Pérot interferometer, Fabry–Pérot cavi ...
s can operate using this phenomenon.
Comparison with diffusion
Standard diffusion has no localization property, being in disagreement with quantum predictions. However, it turns out that it is based on approximation of the
principle of maximum entropy
The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy, in the context of precisely stated prior data (such as a proposition ...
, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy. This approximation is repaired in
maximal entropy random walk
Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents ...
, also repairing the disagreement: it turns out to lead to exactly the quantum ground state stationary probability distribution with its strong localization properties.
[Z. Burda, J. Duda, J. M. Luck, and B. Waclaw, ''Localization of the Maximal Entropy Random Walk'']
Phys. Rev. Lett., 2009.[J. Duda, ''Extended Maximal Entropy Random Walk'']
PhD Thesis, 2012.
See also
*
Aubry–André model The Aubry–André model is a statistical toy model to study thermodynamic properties in condensed matter. The model is usually employed to study quasicrystals and the transition metal-insulator in disordered systems predicted by Anderson localizati ...
Notes
Further reading
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*{{ cite journal , last = Choi , first = Seung Ho , year = 2018 , title = Anderson light localization in biological nanostructures of native silk , journal = Nature Communications , volume = 9 , issue = 1, pages = 452 , doi = 10.1038/s41467-017-02500-5 , pmid = 29386508, pmc = 5792459 , bibcode = 2018NatCo...9..452C , display-authors=etal
External links
Fifty years of Anderson localization Ad Lagendijk, Bart van Tiggelen, and Diederik S. Wiersma, Physics Today 62(8), 24 (2009).
Example of an electronic eigenstate at the MIT in a system with 1367631 atomsEach cube indicates by its size the probability to find the electron at the given position. The color scale denotes the position of the cubes along the axis into the plane
Videos of multifractal electronic eigenstates at the MITAnderson localization of elastic wavesPopular scientific article on the first experimental observation of Anderson localization in matter waves
Mesoscopic physics
Condensed matter physics