HOME

TheInfoList



OR:

In mathematics, in the areas of
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article int ...
and combinatorics, Mirsky's theorem characterizes the height of any finite
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a bina ...
in terms of a partition of the order into a minimum number of
antichain In mathematics, in the area of order theory, an antichain is a subset of a partially ordered set such that any two distinct elements in the subset are incomparable. The size of the largest antichain in a partially ordered set is known as its wid ...
s. It is named for and is closely related to Dilworth's theorem on the widths of partial orders, to the
perfection Perfection is a state, variously, of completeness, flawlessness, or supreme excellence. The term is used to designate a range of diverse, if often kindred, concepts. These have historically been addressed in a number of discrete disciplines, ...
of
comparability graph In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable grap ...
s, to the
Gallai–Hasse–Roy–Vitaver theorem In graph theory, the Gallai–Hasse–Roy–Vitaver theorem is a form of duality between the colorings of the vertices of a given undirected graph and the orientations of its edges. It states that the minimum number of colors needed to properly c ...
relating longest paths and
colorings Food coloring, or color additive, is any dye, pigment, or substance that imparts color when it is added to food or drink. They come in many forms consisting of liquids, powders, gels, and pastes. Food coloring is used in both commercial food ...
in graphs, and to the
Erdős–Szekeres theorem In mathematics, the Erdős–Szekeres theorem asserts that, given ''r'', ''s,'' any sequence of distinct real numbers with length at least (''r'' − 1)(''s'' − 1) + 1 contains a monotonically increasing su ...
on monotonic subsequences.


The theorem

The height of a partially ordered set is defined to be the maximum cardinality of a chain, a
totally ordered In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive ...
subset of the given partial order. For instance, in the set of positive integers from 1 to ''N'', ordered by
divisibility In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
, one of the largest chains consists of the
powers of two A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In a context where only integers are considered, is restricted to non-negative ...
that lie within that range, from which it follows that the height of this partial order is 1+\lfloor\log_2 N\rfloor. Mirsky's theorem states that, for every finite partially ordered set, the height also equals the minimum number of antichains (subsets in which no pair of elements are ordered) into which the set may be partitioned. In such a partition, every two elements of the longest chain must go into two different antichains, so the number of antichains is always greater than or equal to the height; another formulation of Mirsky's theorem is that there always exists a partition for which the number of antichains equals the height. Again, in the example of positive integers ordered by divisibility, the numbers can be partitioned into the antichains , , , etc. There are 1+\lfloor\log_2 N\rfloor sets in this partition, and within each of these sets, every pair of numbers forms a ratio less than two, so no two numbers within one of these sets can be divisible. To prove the existence of a partition into a small number of antichains for an arbitrary finite partially ordered set, consider for every element ''x'' the chains that have ''x'' as their largest element, and let ''N''(''x'') denote the size of the largest of these ''x''-maximal chains. Then each set ''N''−1(''i''), consisting of elements that have equal values of ''N'', is an antichain, and these antichains partition the partial order into a number of antichains equal to the size of the largest chain. In his original proof, Mirsky constructs the same partition inductively, by choosing an antichain of the maximal elements of longest chains, and showing that the length of the longest chain among the remaining elements is reduced by one.


Related results


Dilworth's theorem

Mirsky was inspired by Dilworth's theorem, stating that, for every partially ordered set, the maximum size of an antichain equals the minimum number of chains in a partition of the set into chains. For sets of
order dimension In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order. This concept is also sometimes called the order dimension or the Dushnik–Miller di ...
two, the two theorems coincide (a chain in the
majorization In mathematics, majorization is a preorder on vectors of real numbers. Let ^_,\ i=1,\,\ldots,\,n denote the i-th largest element of the vector \mathbf\in\mathbb^n. Given \mathbf,\ \mathbf \in \mathbb^n, we say that \mathbf weakly majorizes (or ...
ordering of points in general position in the plane is an antichain in the set of points formed by a 90° rotation from the original set, and vice versa) but for more general partial orders the two theorems differ, and (as Mirsky observes) Dilworth's theorem is more difficult to prove. Mirsky's theorem and Dilworth's theorem are also related to each other through the theory of
perfect graph In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the order of the largest clique of that subgraph (clique number). Equivalently stated in symbolic terms an arbitrary graph G=(V,E) is perfe ...
s. An undirected graph is perfect if, in every
induced subgraph In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset. Defini ...
, the
chromatic number In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices ...
equals the size of the largest clique. In the
comparability graph In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable grap ...
of a partially ordered set, a clique represents a chain and a coloring represents a partition into antichains, and induced subgraphs of comparability graphs are themselves comparability graphs, so Mirsky's theorem states that comparability graphs are perfect. Analogously, Dilworth's theorem states that every
complement graph In the mathematical field of graph theory, the complement or inverse of a graph is a graph on the same vertices such that two distinct vertices of are adjacent if and only if they are not adjacent in . That is, to generate the complement of ...
of a comparability graph is perfect. The
perfect graph theorem In graph theory, the perfect graph theorem of states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by , and it is sometimes called the weak perfect graph theorem to disti ...
of states that the complements of perfect graphs are always perfect, and can be used to deduce Dilworth's theorem from Mirsky's theorem and vice versa .


Gallai–Hasse–Roy–Vitaver theorem

Mirsky's theorem can be restated in terms of
directed acyclic graph In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one v ...
s (representing a partially ordered set by
reachability In graph theory, reachability refers to the ability to get from one Vertex (graph theory), vertex to another within a graph. A vertex s can reach a vertex t (and t is reachable from s) if there exists a sequence of Glossary of graph theory#Basics, ...
of their vertices), as the statement that there exists a
graph homomorphism In the mathematical field of graph theory, a graph homomorphism is a mapping between two graphs that respects their structure. More concretely, it is a function between the vertex sets of two graphs that maps adjacent vertices to adjacent verti ...
from a given directed acyclic graph ''G'' to a ''k''-vertex transitive tournament if and only if there does not exist a homomorphism from a (''k'' + 1)-vertex
path graph In the mathematical field of graph theory, a path graph or linear graph is a graph whose vertices can be listed in the order such that the edges are where . Equivalently, a path with at least two vertices is connected and has two termina ...
to ''G''. For, the largest path graph that has a homomorphism to ''G'' gives the longest chain in the reachability ordering, and the sets of vertices with the same image in a homomorphism to a transitive tournament form a partition into antichains. This statement generalizes to the case that ''G'' is not acyclic, and is a form of the
Gallai–Hasse–Roy–Vitaver theorem In graph theory, the Gallai–Hasse–Roy–Vitaver theorem is a form of duality between the colorings of the vertices of a given undirected graph and the orientations of its edges. It states that the minimum number of colors needed to properly c ...
on graph colorings and
orientations ''Orientations'' is a bimonthly print magazine published in Hong Kong and distributed worldwide since 1969. It is an authoritative source of information on the many and varied aspects of the arts of East and Southeast Asia, the Himalayas, the India ...
.


Erdős–Szekeres theorem

It follows from either Dilworth's theorem or Mirsky's theorem that, in every partially ordered set of ''rs'' + 1 elements, there must exist either a chain of ''r'' + 1 elements or an antichain of ''s'' + 1 elements. uses this observation, applied to a partial order of order dimension two, to prove the
Erdős–Szekeres theorem In mathematics, the Erdős–Szekeres theorem asserts that, given ''r'', ''s,'' any sequence of distinct real numbers with length at least (''r'' − 1)(''s'' − 1) + 1 contains a monotonically increasing su ...
that in every sequence of ''rs'' + 1 totally ordered elements there must exist either a monotonically increasing subsequence of ''r'' + 1 elements or a monotonically decreasing subsequence of ''s'' + 1 elements.


Extensions

Mirsky's theorem extends immediately to infinite partially ordered sets with finite height. However, the relation between the length of a chain and the number of antichains in a partition into antichains does not extend to infinite cardinalities: for every infinite
cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. T ...
κ, there exist partially ordered sets that have no infinite chain and that do not have an antichain partition with κ or fewer antichains .


References

*. *. *. *. *. *. {{Order theory Articles containing proofs Order theory Perfect graphs Theorems in combinatorics