HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a minimal surface of revolution or minimum surface of revolution is a
surface of revolution A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) around an axis of rotation. Examples of surfaces of revolution generated by a straight line are cylindrical and conical surfaces depending on ...
defined from two points in a half-plane, whose boundary is the axis of revolution of the surface. It is generated by a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
that lies in the half-plane and connects the two points; among all the surfaces that can be generated in this way, it is the one that minimizes the
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
. A basic problem in the
calculus of variations The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
is finding the curve between two points that produces this minimal surface of revolution.


Relation to minimal surfaces

A minimal surface of revolution is a subtype of
minimal surface In mathematics, a minimal surface is a surface that locally minimizes its area. This is equivalent to having zero mean curvature (see definitions below). The term "minimal surface" is used because these surfaces originally arose as surfaces that ...
. A minimal surface is defined not as a surface of minimal area, but as a surface with a
mean curvature In mathematics, the mean curvature H of a surface S is an ''extrinsic'' measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space. The ...
of 0. Since a mean curvature of 0 is a
necessary condition In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If then ", is necessary for , because the truth of ...
of a surface of minimal area, all minimal surfaces of revolution are minimal surfaces, but not all minimal surfaces are minimal surfaces of revolution. As a point forms a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
when rotated about an axis, finding the minimal surface of revolution is equivalent to finding the minimal surface passing through two circular wireframes. A physical realization of a minimal surface of revolution is
soap film Soap films are thin layers of liquid (usually water-based) surrounded by air. For example, if two soap bubbles come into contact, they merge and a thin film is created in between. Thus, foams are composed of a network of films connected by Platea ...
stretched between two parallel circular
wire Overhead power cabling. The conductor consists of seven strands of steel (centre, high tensile strength), surrounded by four outer layers of aluminium (high conductivity). Sample diameter 40 mm A wire is a flexible strand of metal. Wire is c ...
s: the soap film naturally takes on the shape with least surface area.


Catenoid solution

If the half-plane containing the two points and the axis of revolution is given
Cartesian coordinate A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
s, making the axis of revolution into the ''x''-axis of the coordinate system, then the curve connecting the points may be interpreted as the
graph of a function In mathematics, the graph of a function f is the set of ordered pairs (x, y), where f(x) = y. In the common case where x and f(x) are real numbers, these pairs are Cartesian coordinates of points in two-dimensional space and thus form a subset ...
. If the Cartesian coordinates of the two given points are (x_1,y_1), (x_2,y_2), then the area of the surface generated by a nonnegative
differentiable function In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
f may be expressed mathematically as :2\pi\int_^ f(x) \sqrt dx and the problem of finding the minimal surface of revolution becomes one of finding the function that minimizes this integral, subject to the
boundary conditions In mathematics, in the field of differential equations, a boundary value problem is a differential equation together with a set of additional constraints, called the boundary conditions. A solution to a boundary value problem is a solution to th ...
that f(x_1)=y_1 and f(x_2)=y_2. In this case, the optimal curve will necessarily be a
catenary In physics and geometry, a catenary (, ) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, superficia ...
. The axis of revolution is the directrix of the catenary, and the minimal surface of revolution will thus be a
catenoid In geometry, a catenoid is a type of surface, arising by rotating a catenary curve about an axis (a surface of revolution). It is a minimal surface, meaning that it occupies the least area when bounded by a closed space. It was formally describe ...
.


Goldschmidt solution

Solutions based on discontinuous functions may also be defined. In particular, for some placements of the two points the optimal solution is generated by a discontinuous function that is nonzero at the two points and zero everywhere else. This function leads to a surface of revolution consisting of two circular disks, one for each point, connected by a degenerate line segment along the axis of revolution. This is known as a Goldschmidt solution after
German German(s) may refer to: * Germany (of or related to) **Germania (historical use) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizens of Germany, see also German nationality law **Ger ...
mathematician
Carl Wolfgang Benjamin Goldschmidt Carl Wolfgang Benjamin Goldschmidt (4 August 1807 – 15 February 1851) was a German astronomer, mathematician, and physicist of Jewish descent who was a professor of astronomy at the University of Göttingen. He is also known as Benjamin Goldsch ...
, who announced his discovery of it in his 1831 paper "Determinatio superficiei minimae rotatione curvae data duo puncta jungentis circa datum axem ortae" ("Determination of the surface-minimal rotation curve given two joined points about a given axis of origin"). To continue the physical analogy of soap film given above, these Goldschmidt solutions can be visualized as instances in which the soap film breaks as the circular wires are stretched apart. However, in a physical soap film, the connecting line segment would not be present. Additionally, if a soap film is stretched in this way, there is a range of distances within which the catenoid solution is still feasible but has greater area than the Goldschmidt solution, so the soap film may stretch into a configuration in which the area is a
local minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
but not a global minimum. For distances greater than this range, the catenary that defines the catenoid crosses the ''x''-axis and leads to a self-intersecting surface, so only the Goldschmidt solution is feasible..


References

{{reflist Minimal surfaces