Microvesicle
   HOME

TheInfoList



OR:

Microvesicles (ectosomes, or microparticles) are a type of extracellular vesicle (EV) that are released from the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
. In multicellular organisms, microvesicles and other EVs are found both in tissues (in the interstitial space between cells) and in many types of body fluids. Delimited by a phospholipid bilayer, microvesicles can be as small as the smallest EVs (30 nm in diameter) or as large as 1000 nm. They are considered to be larger, on average, than intracellularly-generated EVs known as exosomes. Microvesicles play a role in intercellular communication and can transport molecules such as
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
, miRNA, and proteins between cells. Though initially dismissed as cellular debris, microvesicles may reflect the antigenic content of the cell of origin and have a role in
cell signaling In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
. Like other EVs, they have been implicated in numerous physiologic processes, including anti-tumor effects, tumor immune suppression, metastasis, tumor-stroma interactions,
angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting ...
, and tissue regeneration. Microvesicles may also remove misfolded proteins, cytotoxic agents and metabolic waste from the cell. Changes in microvesicle levels may indicate diseases including cancer.


Formation and contents

Different cells can release microvesicles from the plasma membrane. Sources of microvesicles include megakaryocytes, blood platelets,
monocytes Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and conventional dendritic cells. As a part of the vertebrate innate immune system monocytes also infl ...
,
neutrophils Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
, tumor cells and
placenta The placenta is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas and waste exchange between the physically separate mater ...
. Platelets play an important role in maintaining hemostasis: they promote
thrombus A thrombus (plural thrombi), colloquially called a blood clot, is the final product of the blood coagulation step in hemostasis. There are two components to a thrombus: aggregated platelets and red blood cells that form a plug, and a mesh of c ...
growth, and thus they prevent loss of blood. Moreover, they enhance immune response, since they express the molecule
CD154 CD154, also called CD40 ligand or CD40L, is a protein that is primarily expressed on activated T cells and is a member of the Tumor necrosis factors, TNF superfamily of molecules. It binds to CD40 (protein), CD40 on antigen-presenting cells (APC) ...
( CD40L). Platelets are activated by inflammation, infection, or injury, and after their activation microvesicles containing CD154 are released from platelets. CD154 is a crucial molecule in the development of T cell-dependent humoral immune response. CD154
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
are incapable of producing
IgG Immunoglobulin G (Ig G) is a type of antibody. Representing approximately 75% of serum antibodies in humans, IgG is the most common type of antibody found in blood circulation. IgG molecules are created and released by plasma B cells. Each IgG a ...
,
IgE Immunoglobulin E (IgE) is a type of antibody (or immunoglobulin (Ig) " isotype") that has been found only in mammals. IgE is synthesised by plasma cells. Monomers of IgE consist of two heavy chains (ε chain) and two light chains, with the ε c ...
, or
IgA Iga may refer to: Arts and entertainment * Ambush at Iga Pass, a 1958 Japanese film * Iga no Kagemaru, Japanese manga series * Iga, a set of characters from the Japanese novel '' The Kouga Ninja Scrolls'' Biology * ''Iga'' (beetle), a gen ...
as a response to
antigens In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
. Microvesicles can also transfer prions and molecules CD41 and CXCR4.


Endothelial microparticles

Endothelial microparticles are small
vesicle Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
s that are released from
endothelial The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the vessel ...
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
and can be found circulating in the
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the c ...
. The microparticle consists of a
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
surrounding a small amount of cytosol. The membrane of the endothelial microparticle contains receptors and other cell surface
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
s which enable the identification of the endothelial origin of the microparticle, and allow it to be distinguished from microparticles from other cells, such as platelets. Although circulating endothelial microparticles can be found in the blood of normal individuals, increased numbers of circulating endothelial microparticles have been identified in individuals with certain
disease A disease is a particular abnormal condition that negatively affects the structure or function of all or part of an organism, and that is not immediately due to any external injury. Diseases are often known to be medical conditions that a ...
s, including
hypertension Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. Long-term high bl ...
and cardiovascular disorders, and
pre-eclampsia Pre-eclampsia is a disorder of pregnancy characterized by the onset of high blood pressure and often a significant amount of protein in the urine. When it arises, the condition begins after 20 weeks of pregnancy. In severe cases of the disease ...
and various forms of vasculitis. The endothelial microparticles in some of these disease states have been shown to have arrays of cell surface molecules reflecting a state of
endothelial dysfunction In vascular diseases, endothelial dysfunction is a systemic pathological state of the endothelium. Along with acting as a semi-permeable membrane, the endothelium is responsible for maintaining vascular tone and regulating oxidative stress by rel ...
. Therefore, endothelial microparticles may be useful as an indicator or index of the functional state of the endothelium in disease, and may potentially play key roles in the pathogenesis of certain diseases, including
rheumatoid arthritis Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involv ...
. Microparticles are derived from many other cell types.


Process of formation

Microvesicles and exosomes are formed and released by two slightly different mechanisms. These processes result in the release of intercellular signaling vesicles. Microvesicles are small,
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
-derived particles that are released into the extracellular environment by the outward budding and fission of the plasma membrane. This budding process involves multiple signaling pathways including the elevation of intracellular calcium and reorganization of the cell's structural scaffolding. The formation and release of microvesicles involve contractile machinery that draws opposing membranes together before pinching off the membrane connection and launching the vesicle into the extracellular space. Microvesicle budding takes place at unique locations on the cell membrane that are enriched with specific lipids and proteins reflecting their cellular origin. At these locations,
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
,
lipids Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include ...
, and nucleic acids are selectively incorporated into microvesicles and released into the surrounding environment. Exosomes are membrane-covered vesicles, formed intracellularly are considered to be smaller than 100 nm. In contrast to microvesicles, which are formed through a process of membrane budding, or
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use o ...
, exosomes are initially formed by
endocytosis Endocytosis is a cellular process in which substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a vesicle containing the ingested material. E ...
. Exosomes are formed by invagination within a cell to create an intracellular vesicle called an endosome, or an endocytic vesicle. In general, exosomes are formed by segregating the cargo (e.g., lipids, proteins, and nucleic acids) within the endosome. Once formed, the endosome combines with a structure known as a
multivesicular body Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membrane ca ...
(MVB). The MVB containing segregated endosomes ultimately fuses with the plasma membrane, resulting in exocytosis of the exosomes. Once formed, both microvesicles and exosomes (collectively called extracellular vesicles) circulate in the extracellular space near the site of release, where they can be taken up by other cells or gradually deteriorate. In addition, some vesicles migrate significant distances by diffusion, ultimately appearing in biological fluids such as
cerebrospinal fluid Cerebrospinal fluid (CSF) is a clear, colorless body fluid found within the tissue that surrounds the brain and spinal cord of all vertebrates. CSF is produced by specialised ependymal cells in the choroid plexus of the ventricles of the bra ...
,
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the c ...
, and
urine Urine is a liquid by-product of metabolism in humans and in many other animals. Urine flows from the kidneys through the ureters to the urinary bladder. Urination results in urine being excretion, excreted from the body through the urethra. Cel ...
.


Mechanism of shedding

There are three mechanisms which lead to release of vesicles into the extracellular space. First of these mechanisms is
exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use o ...
from multivesicular bodies and the formation of exosomes. Another mechanism is budding of microvesicles directly from a plasma membrane. And the last one is cell death leading to apoptotic blebbing. These are all energy-requiring processes. Under physiologic conditions, the plasma membrane of cells has an asymmetric distribution of
phospholipids Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
. aminophospholipids, phosphatidylserine, and
phosphatidylethanolamine Phosphatidylethanolamine (PE) is a class of phospholipids found in biological membranes. They are synthesized by the addition of cytidine diphosphate-ethanolamine to diglycerides, releasing cytidine monophosphate. ''S''-Adenosyl methionine can s ...
are specifically sequestered in the inner leaflet of the membrane. The transbilayer lipid distribution is under the control of three phospholipidic pumps: an inward-directed pump, or
flippase Flippases (rarely spelled flipases) are transmembrane lipid transporter proteins located in the membrane which belong to ABC transporter or P4-type ATPase families. They are responsible for aiding the movement of phospholipid molecules between the ...
; an outward-directed pump, or
floppase Flippases (rarely spelled flipases) are transmembrane lipid transporter proteins located in the membrane which belong to ABC transporter or P4-type ATPase families. They are responsible for aiding the movement of phospholipid molecules between the ...
; and a lipid
scramblase Scramblase is a protein responsible for the translocation of phospholipids between the two monolayers of a lipid bilayer of a cell membrane. In humans, phospholipid scramblases (PLSCRs) constitute a family of five homologous proteins tha ...
, responsible for non-specific redistribution of lipids across the membrane. After cell stimulation, including apoptosis, a subsequent cytosolic Ca2+ increase promotes the loss of phospholipid asymmetry of the plasma membrane, subsequent phosphatidylserine exposure, and a transient phospholipidic imbalance between the external leaflet at the expense of the inner leaflet, leading to budding of the plasma membrane and microvesicle release.


Molecular contents

The lipid and protein content of microvesicles has been analyzed using various biochemical techniques. Microvesicles display a spectrum of enclosed molecules enclosed within the vesicles and their plasma membranes. Both the membrane molecular pattern and the internal contents of the vesicle depend on the cellular origin and the molecular processes triggering their formation. Because microvesicles are not intact cells, they do not contain
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
, Golgi,
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
, or a
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
with its associated DNA. Microvesicle membranes consist mainly of membrane lipids and membrane proteins. Regardless of their cell type of origin, nearly all microvesicles contain proteins involved in membrane transport and fusion. They are surrounded by a phospholipid bilayer composed of several different lipid molecules. The protein content of each microvesicle reflects the origin of the cell from which it was released. For example, those released from antigen-presenting cells (APCs), such as B cells and dendritic cells, are enriched in proteins necessary for
adaptive immunity The adaptive immune system, also known as the acquired immune system, is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system ...
, while microvesicles released from tumors contain proapoptotic molecules and oncogenic receptors (e.g. EGFR). In addition to the proteins specific to the cell type of origin, some proteins are common to most microvesicles. For example, nearly all contain the cytoplasmic proteins tubulin, actin and actin-binding proteins, as well as many proteins involved in signal transduction, cell structure and motility, and transcription. Most microvesicles contain the so-called "heat-shock proteins"
hsp70 The 70 kilodalton heat shock proteins (Hsp70s or DnaK) are a family of conserved ubiquitously expressed heat shock proteins. Proteins with similar structure exist in virtually all living organisms. Intracellularly localized Hsp70s are an importa ...
and hsp90, which can facilitate interactions with cells of the immune system. Finally, tetraspanin proteins, including
CD9 CD9 is a gene encoding a protein that is a member of the transmembrane 4 superfamily also known as the tetraspanin family. It is a cell surface glycoprotein that consists of four transmembrane regions and has two extracellular loops that contain ...
,
CD37 Leukocyte antigen CD37 is a protein that in humans is encoded by the ''CD37'' gene. Function The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell- ...
, CD63 and CD81 are one of the most abundant protein families found in microvesicle membranes. Many of these proteins may be involved in the sorting and selection of specific cargos to be loaded into the lumen of the microvesicle or its membrane. Other than lipids and proteins, microvesicles are enriched with nucleic acids (e.g., messenger RNA (
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of Protein biosynthesis, synthesizing a protein. mRNA is ...
) and microRNA ( miRNA)). The identification of RNA molecules in microvesicles supports the hypothesis that they are a biological vehicle for the transfer of nucleic acids and subsequently modulate the target cell's protein synthesis. Messenger RNA transported from one cell to another through microvesicles can be translated into proteins, conferring new function to the target cell. The discovery that microvesicles may shuttle specific mRNA and miRNA suggests that this may be a new mechanism of genetic exchange between cells. Exosomes produced by cells exposed to oxidative stress can mediate protective signals, reducing oxidative stress in recipient cells, a process which is proposed to depend on exosomal RNA transfer. These RNAs are specifically targeted to microvesicles, in some cases containing detectable levels of RNA that is not found in significant amounts in the donor cell. Because the specific proteins, mRNAs, and miRNAs in microvesicles are highly variable, it is likely that these molecules are specifically packaged into vesicles using an active sorting mechanism. At this point, it is unclear exactly which mechanisms are involved in packaging soluble proteins and nucleic acids into microvesicles.


Role on target cells

Once released from their cell of origin, microvesicles interact specifically with cells they recognize by binding to cell-type specific, membrane-bound receptors. Because microvesicles contain a variety of surface molecules, they provide a mechanism for engaging different cell receptors and exchanging material between cells. This interaction ultimately leads to fusion with the target cell and release of the vesicles' components, thereby transferring bioactive molecules, lipids, genetic material, and proteins. The transfer of microvesicle components includes specific mRNAs and proteins, contributing to the proteomic properties of target cells. microvesicles can also transfer miRNAs that are known to regulate gene expression by altering mRNA turnover.


Mechanisms of signaling


Degradation

In some cases, the degradation of microvesicles is necessary for the release of
signaling molecules In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
. During microvesicle production, the cell can concentrate and sort the signaling molecules which are released into the extracellular space upon microvesicle degradation. Dendritic cells, macrophage and microglia derived microvesicles contain
proinflammatory cytokines An inflammatory cytokine or proinflammatory cytokine is a type of signaling molecule (a cytokine) that is secreted from immune cells like helper T cells (Th) and macrophages, and certain other cell types that promote inflammation. They include int ...
and
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. N ...
and endothelial cells release growth factors using this mechanism of release.


Fusion

Proteins on the surface of the microvesicle will interact with specific molecules, such as
integrin Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, ...
, on the surface of its target cell. Upon binding, the microvesicle can fuse with the plasma membrane. This results in the delivery of nucleotides and soluble proteins into the cytosol of the target cell as well as the integration of lipids and membrane proteins into its plasma membrane.


Internalization

Microvesicles can be endocytosed upon binding to their targets, allowing for additional steps of regulation by the target cell. The microvesicle may fuse, integrating lipids and membrane proteins into the endosome while releasing its contents into the cytoplasm. Alternatively, the endosome may mature into a
lysosome A lysosome () is a membrane-bound organelle found in many animal cells. They are spherical vesicles that contain hydrolytic enzymes that can break down many kinds of biomolecules. A lysosome has a specific composition, of both its membrane prot ...
causing the degradation of the microvesicle and its contents, in which case the signal is ignored.


=Transcytosis

= After internalization of microvesicle via endocytosis, the endosome may move across the cell and fuse with the plasma membrane, a process called transcytosis. This results in the ejection of the microvesicle back into the extracellular space or may result in the transportation of the microvesicle into a neighboring cell. This mechanism might explain the ability of microvesicle to cross biological barriers, such as the
blood brain barrier Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the Cell (biology), cells, and transports Metabolic waste, metabolic waste products away from th ...
, by moving from cell to cell.


Contact dependent signaling

In this form of signaling, the microvesicle does not fuse with the plasma membrane or engulfed by the target cell. Similar to the other mechanisms of signaling, the microvesicle has molecules on its surface that will interact specifically with its target cell. There are additional surface molecules, however, that can interact with receptor molecules which will interact with various signaling pathways. This mechanism of action can be used in processes such as antigen presentation, where MHC molecules on the surface of microvesicle can stimulate an immune response. Alternatively, there may be molecules on microvesicle surfaces that can recruit other proteins to form extracellular protein complexes that may be involved in signaling to the target cell.


Relevance in disease


Cancer


Promoting aggressive tumor phenotypes

The oncogenic receptor ECGFvIII, which is located in a specific type of aggressive glioma tumor, can be transferred to a non-aggressive population of tumor cells via microvesicles. After the oncogenic protein is transferred, the recipient cells become transformed and show characteristic changes in the expression levels of target genes. It is possible that transfer of other mutant oncogenes, such as HER2, may be a general mechanism by which malignant cells cause cancer growth at distant sites. Microvesicles from non-cancer cells can signal to cancer cells to become more aggressive. Upon exposure to microvesicles from tumor-associated macrophages, breast cancer cells become more invasive ''in vitro''.


Promoting angiogenesis

Angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting ...
, which is essential for tumor survival and growth, occurs when endothelial cells proliferate to create a matrix of blood vessels that infiltrate the tumor, supplying the nutrients and oxygen necessary for tumor growth. A number of reports have demonstrated that tumor-associated microvesicles release proangiogenic factors that promote endothelial cell proliferation, angiogenesis, and tumor growth. Microvesicles shed by tumor cells and taken up by endothelial cells also facilitate angiogenic effects by transferring specific mRNAs and miRNAs.


Involvement in multidrug resistance

When anticancer drugs such as doxorubicin accumulate in microvesicles, the drug's cellular levels decrease. This can ultimately contribute to the process of drug resistance. Similar processes have been demonstrated in microvesicles released from cisplatin-insensitive cancer cells. Vesicles from these tumors contained nearly three times more cisplatin than those released from cisplatin-sensitive cells. For example, tumor cells can accumulate drugs into microvesicles. Subsequently, the drug-containing microvesicles are released from the cell into the extracellular environment, thereby mediating resistance to
chemotherapeutic Chemotherapy (often abbreviated to chemo and sometimes CTX or CTx) is a type of cancer treatment that uses one or more anti-cancer drugs (chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. Chemotherap ...
agents and resulting in significantly increased tumor growth, survival, and
metastasis Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then, ...
.


Interference with antitumor immunity

Microvesicles from various tumor types can express specific cell-surface molecules (e.g. FasL or CD95) that induce
T-cell A T cell is a type of lymphocyte. T cells are one of the important white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell rec ...
apoptosis and reduce the effectiveness of other immune cells. microvesicles released from lymphoblastoma cells express the immune-suppressing protein latent membrane protein-1 ( LMP-1), which inhibits T-cell proliferation and prevents the removal of circulating tumor cells (CTCs). As a consequence, tumor cells can turn off T-cell responses or eliminate the antitumor immune cells altogether by releasing microvesicles. the combined use of microvesicles and 5-FU resulted in enhanced chemosensitivity of squamous cell carcinoma cells more than the use of either 5-FU or microvesicle alone


Impact on tumor metastasis

Degradation of the extracellular matrix is a critical step in promoting tumor growth and metastasis. Tumor-derived microvesicles often carry protein-degrading enzymes, including matrix metalloproteinase 2 (
MMP-2 72 kDa type IV collagenase also known as matrix metalloproteinase-2 (MMP-2) and gelatinase A is an enzyme that in humans is encoded by the ''MMP2'' gene. The ''MMP2'' gene is located on chromosome 16 at position 12.2. Function Proteins of the ...
), MMP-9, and urokinase-type plasminogen activator ( uPA). By releasing these proteases, tumor cells can degrade the
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix, is a three-dimensional network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide stru ...
and invade surrounding tissues. Likewise, inhibiting MMP-2, MMP-9, and uPA prevents microvesicles from facilitating tumor metastasis. Matrix digestion can also facilitate angiogenesis, which is important for tumor growth and is induced by the
horizontal transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between Unicellular organism, unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offsprin ...
of RNAs from microvesicles.


Cellular Origin of Microvesicles

The release of microvesicles has been shown from endothelial cells,
vascular smooth muscle cells Vascular smooth muscle is the type of smooth muscle that makes up most of the walls of blood vessels. Structure Vascular smooth muscle refers to the particular type of smooth muscle found within, and composing the majority of the wall of blood ve ...
,
platelets Platelets, also called thrombocytes (from Greek θρόμβος, "clot" and κύτος, "cell"), are a component of blood whose function (along with the coagulation factors) is to react to bleeding from blood vessel injury by clumping, thereby ini ...
, white blood cells (e.g.
leukocytes White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
and
lymphocytes A lymphocyte is a type of white blood cell (leukocyte) in the immune system of most vertebrates. Lymphocytes include natural killer cells (which function in cell-mediated, cytotoxic innate immunity), T cells (for cell-mediated, cytotoxic adap ...
), and
red blood cells Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek language, Greek ''erythros'' for "red" and ''k ...
. Although some of these microvesicle populations occur in the blood of healthy individuals and patients, there are obvious changes in number, cellular origin, and composition in various disease states. It has become clear that microvesicles play important roles in regulating the cellular processes that lead to disease pathogenesis. Moreover, because microvesicles are released following apoptosis or cell activation, they have the potential to induce or amplify disease processes. Some of the inflammatory and pathological conditions that microvesicles are involved in include
cardiovascular disease Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels. CVD includes coronary artery diseases (CAD) such as angina and myocardial infarction (commonly known as a heart attack). Other CVDs include stroke, h ...
,
hypertension Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. Long-term high bl ...
, neurodegenerative disorders,
diabetes Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ap ...
, and
rheumatic diseases Rheumatism or rheumatic disorders are conditions causing chronic pain, chronic, often intermittent pain affecting the joints or connective tissue. Rheumatism does not designate any specific disorder, but covers at least 200 different conditions, ...
.


Cardiovascular disease

Microvesicles are involved in cardiovascular disease initiation and progression. Microparticles derived from monocytes aggravate atherosclerosis by modulating inflammatory cells. Additionally, microvesicles can induce clotting by binding to clotting factors or by inducing the expression of clotting factors in other cells. Circulating microvesicles isolated from cardiac surgery patients were found to be thrombogenic in both in vitro assays and in rats. Microvesicles isolated from healthy individuals did not have the same effects and may actually have a role in reducing clotting.
Tissue factor Tissue factor, also called platelet tissue factor, factor III, or CD142, is a protein encoded by the ''F3'' gene, present in subendothelial tissue and leukocytes. Its role in the clotting process is the initiation of thrombin formation from the ...
, an initiator of coagulation, is found in high levels within microvesicles, indicating their role in clotting. Renal mesangial cells exposed to high glucose media release microvesicles containing tissue factor, having an angiogenic effect on endothelial cells.


Inflammation

Microvesicles contain cytokines that can induce
inflammation Inflammation (from la, wikt:en:inflammatio#Latin, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or Irritation, irritants, and is a protective response involving im ...
via numerous different pathways. These cells will then release more microvesicles, which have an additive effect. This can call
neutrophils Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
and
leukocytes White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
to the area, resulting in the aggregation of cells. However, microvesicles also seem to be involved in a normal physiological response to disease, as there are increased levels of microvesicles that result from pathology.


Neurological disorders

Microvesicles seem to be involved in a number of neurological diseases. Since they are involved in numerous vascular diseases and inflammation, strokes and
multiple sclerosis Multiple (cerebral) sclerosis (MS), also known as encephalomyelitis disseminata or disseminated sclerosis, is the most common demyelinating disease, in which the insulating covers of nerve cells in the brain and spinal cord are damaged. This d ...
seem to be other diseases for which microvesicles are involved. Circulating microvesicles seem to have an increased level of phosphorylated tau proteins during early stage
Alzheimer's disease Alzheimer's disease (AD) is a neurodegeneration, neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in short-term me ...
. Similarly, increased levels of CD133 are an indicator of
epilepsy Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrical ...
.


Clinical applications


Detection of cancer

Tumor-associated microvesicles are abundant in the blood, urine, and other body fluids of patients with cancer, and are likely involved in tumor progression. They offer a unique opportunity to noninvasively access the wealth of biological information related to their cells of origin. The quantity and molecular composition of microvesicles released from malignant cells varies considerably compared with those released from normal cells. Thus, the concentration of plasma microvesicles with molecular markers indicative of the disease state may be used as an informative blood-based biosignature for cancer. Microvesicles express many membrane-bound proteins, some of which can be used as tumor biomarkers. Several tumor markers accessible as proteins in blood or urine have been used to screen and diagnose various types of cancer. In general, tumor markers are produced either by the tumor itself or by the body in response to the presence of cancer or some inflammatory conditions. If a tumor marker level is higher than normal, the patient is examined more closely to look for cancer or other conditions. For example,
CA19-9 Carbohydrate antigen 19-9 (CA19-9), also known as sialyl-LewisA, is a tetrasaccharide which is usually attached to O- glycans on the surface of cells. It is known to play a role in cell-to-cell recognition processes. It is also a tumor marker used ...
,
CA-125 Mucin-16 (MUC-16) also known as Ovarian cancer-related tumor marker CA125 is a protein that in humans is encoded by the ''MUC16'' gene. MUC-16 is a member of the mucin family glycoproteins. MUC-16 has found application as a tumor marker or bioma ...
, and CEA have been used to help diagnose
pancreatic The pancreas is an Organ (anatomy), organ of the digestive system and endocrine system of vertebrates. In humans, it is located in the abdominal cavity, abdomen behind the stomach and functions as a gland. The pancreas is a mixed or heterocrine ...
,
ovarian The ovary is an organ in the female reproductive system that produces an ovum. When released, this travels down the fallopian tube into the uterus, where it may become fertilized by a sperm. There is an ovary () found on each side of the body. T ...
, and gastrointestinal malignancies, respectively. However, although they have proven clinical utility, none of these tumor markers are highly sensitive or specific. Clinical research data suggest that tumor-specific markers exposed on microvesicles are useful as a clinical tool to diagnose and monitor disease. Research is also ongoing to determine if tumor-specific markers exposed on microvesicles are predictive for therapeutic response. Also published as Also published as Evidence produced by independent research groups has demonstrated that microvesicles from the cells of healthy tissues, or selected miRNAs from these microvesicles, can be employed to reverse many tumors in pre-clinical cancer models, and may be used in combination with chemotherapy. Conversely, microvesicles processed from a tumor cell are involved in the transport of cancer proteins and in delivering microRNA to the surrounding healthy tissue. It leads to a change of healthy cell phenotype and creates a tumor-friendly environment. Microvesicles play an important role in tumor
angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting ...
and in the degradation of matrix due to the presence of
metalloproteases A metalloproteinase, or metalloprotease, is any protease enzyme whose catalytic mechanism involves a metal. An example is ADAM12 which plays a significant role in the fusion of muscle cells during embryo development, in a process known as myogen ...
, which facilitate metastasis. They are also involved in intensification of the function of regulatory T-lymphocytes and in the induction of apoptosis of
cytotoxic T-lymphocytes A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected by intracellular pa ...
, because microvesicles released from a tumor cell contain Fas ligand and
TRAIL A trail, also known as a path or track, is an unpaved lane or small road usually passing through a natural area. In the United Kingdom and the Republic of Ireland, a path or footpath is the preferred term for a pedestrian or hiking trail. Th ...
. They prevent differentiation of
monocytes Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and conventional dendritic cells. As a part of the vertebrate innate immune system monocytes also infl ...
to dendritic cells. Tumor microvesicles also carry tumor
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
, so they can be an instrument for developing tumor vaccines. Circulating miRNA and segments of DNA in all body fluids can be potential markers for tumor diagnostics.


Microvesicles and Rheumatoid arthritis

Rheumatoid arthritis Rheumatoid arthritis (RA) is a long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involv ...
is a chronic systemic
autoimmune disease An autoimmune disease is a condition arising from an abnormal immune response to a functioning body part. At least 80 types of autoimmune diseases have been identified, with some evidence suggesting that there may be more than 100 types. Nearly a ...
characterized by inflammation of joints. In the early stage there are abundant
Th17 T helper 17 cells (Th17) are a subset of pro-inflammatory T helper cells defined by their production of interleukin 17 (IL-17). They are related to T regulatory cells and the signals that cause Th17s to differentiate actually inhibit Treg different ...
cells producing proinflammatory cytokines IL-17A, IL-17F,
TNF Tumor necrosis factor (TNF, cachexin, or cachectin; formerly known as tumor necrosis factor alpha or TNF-α) is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homolog ...
, IL-21, and IL-22 in the
synovial fluid Synovial fluid, also called synovia, elp 1/sup> is a viscous, non-Newtonian fluid found in the cavities of synovial joints. With its egg white–like consistency, the principal role of synovial fluid is to reduce friction between the articular ...
. regulatory T-lymphocytes have a limited capability to control these cells. In the late stage, the extent of inflammation correlates with numbers of activated
macrophages Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer ce ...
that contribute to joint inflammation and bone and
cartilage Cartilage is a resilient and smooth type of connective tissue. In tetrapods, it covers and protects the ends of long bones at the joints as articular cartilage, and is a structural component of many body parts including the rib cage, the neck an ...
destruction, because they have the ability to transform themselves into
osteoclasts An osteoclast () is a type of bone cell that breaks down bone tissue. This function is critical in the maintenance, repair, and remodeling of bones of the vertebral skeleton. The osteoclast disassembles and digests the composite of hydrated prote ...
that destroy bone tissue. Synthesis of reactive oxygen species, proteases, and
prostaglandins The prostaglandins (PG) are a group of physiologically active lipid compounds called eicosanoids having diverse hormone-like effects in animals. Prostaglandins have been found in almost every tissue in humans and other animals. They are derive ...
by
neutrophils Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
is increased. Activation of platelets via collagen receptor GPVI stimulates the release of microvesicles from platelet cytoplasmic membranes. These microparticles are detectable at a high level in synovial fluid, and they promote joint inflammation by transporting proinflammatory cytokine IL-1.


Biological markers for disease

In addition to detecting cancer, it is possible to use microvesicles as biological markers to give prognoses for various diseases. Many types of neurological diseases are associated with increased level of specific types of circulating microvesicles. For example, elevated levels of phosphorylated tau proteins can be used to diagnose patients in early stages of Alzheimer's. Additionally, it is possible to detect increased levels of CD133 in microvesicles of patients with epilepsy.


Mechanism for drug delivery

Circulating microvesicles may be useful for the delivery of drugs to very specific targets. Using electroporation or
centrifugation Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate ...
to insert drugs into microvesicles targeting specific cells, it is possible to target the drug very efficiently. This targeting can help by reducing necessary doses as well as prevent off-target side effects. They can target anti-inflammatory drugs to specific tissues. Additionally, circulating microvesicles can bypass the
blood–brain barrier The blood–brain barrier (BBB) is a highly selective semipermeable membrane, semipermeable border of endothelium, endothelial cells that prevents solutes in the circulating blood from ''non-selectively'' crossing into the extracellular fluid of ...
and deliver their cargo to neurons while not having an effect on muscle cells. The blood-brain barrier is typically a difficult obstacle to overcome when designing drugs, and microvesicles may be a means of overcoming it. Current research is looking into efficiently creating microvesicles synthetically, or isolating them from patient or engineered cell lines.


See also

*
International Society for Extracellular Vesicles The International Society for Extracellular Vesicles (ISEV) is an international scientific organization that focuses on the study of extracellular vesicles (EV), including exosomes, microvesicles, oncosomes, and other membrane-bound particles th ...
*
Journal of Extracellular Vesicles The ''Journal of Extracellular Vesicles'' is a peer-reviewed open-access scientific journal covering research on lipid bilayer-delimited particles known as extracellular vesicles (EVs). EVs are released from cells and include endosome-origin exoso ...
*
Exocytosis Exocytosis () is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell ('' exo-'' + ''cytosis''). As an active transport mechanism, exocytosis requires the use o ...
*
Membrane vesicle trafficking Membrane vesicle trafficking in eukaryotic animal cells involves movement of biochemical signal molecules from synthesis-and-packaging locations in the Golgi body to specific release locations on the inside of the plasma membrane of the secretory c ...


References


Further reading

* *{{cite journal , last1=Al-Nedawi , first1=Khalid , last2=Meehan , first2=Brian , last3=Rak , first3=Janusz , title=Microvesicles: messengers and mediators of tumor progression , journal=Cell Cycle , volume=8 , issue=13 , pages=2014–8 , year=2009 , pmid=19535896 , url=http://www.landesbioscience.com/journals/cc/abstract.php?id=8988 , doi=10.4161/cc.8.13.8988, doi-access=free


External links


Vesiclepedia—A database of molecules identified in extracellular vesicles

ExoCarta—A database of molecules identified in exosomes

International Society for Extracellular Vesicles

Resource on the detection of circulating microvesicles
Cell biology Vesicles Medical diagnosis Nanotechnology