HOME

TheInfoList



OR:

''Mesodinium rubrum'' (or ''Myrionecta rubra'') is a species of
ciliates The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different ...
. It constitutes a
plankton Plankton are the diverse collection of organisms that drift in Hydrosphere, water (or atmosphere, air) but are unable to actively propel themselves against ocean current, currents (or wind). The individual organisms constituting plankton are ca ...
community and is found throughout the year, most abundantly in spring and fall, in coastal areas. Although discovered in 1908, its scientific importance came into light in the late 1960s when it attracted scientists by the recurrent red colouration it caused by forming massive blooms, that cause red tides in the oceans. Unlike typical protozoans, ''M. rubrum'' can make its own nutrition by
photosynthesis Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
. The unusual
autotrophic An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates, fats, and proteins) us ...
property was discovered in 2006 when genetic sequencing revealed that the photosynthesising organelles, plastids, were derived from the ciliate's principal food, the autotrophic algae called cryptomonads (or cryptophytes), which contain
endosymbiont An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualism (biology), mutualistic relationship. Examples are nitrogen-fixing bacteria (called rhizobia), whi ...
red algae Red algae, or Rhodophyta (, ; ), make up one of the oldest groups of eukaryotic algae. The Rhodophyta comprises one of the largest Phylum, phyla of algae, containing over 7,000 recognized species within over 900 Genus, genera amidst ongoing taxon ...
whose internal
chloroplast A chloroplast () is a type of membrane-bound organelle, organelle known as a plastid that conducts photosynthesis mostly in plant cell, plant and algae, algal cells. Chloroplasts have a high concentration of chlorophyll pigments which captur ...
s (evolved via
endosymbiosis An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualism (biology), mutualistic relationship. Examples are nitrogen-fixing bacteria (called rhizobia), whi ...
with
cyanobacteria Cyanobacteria ( ) are a group of autotrophic gram-negative bacteria that can obtain biological energy via oxygenic photosynthesis. The name "cyanobacteria" () refers to their bluish green (cyan) color, which forms the basis of cyanobacteri ...
) indirectly enable ''M. rubrum'' to photosynthesize using
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
. The ciliate is thus both autotrophic and
heterotrophic A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
at the same time. This also indicates that it is an example of multiple-stage
endosymbiosis An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically the two organisms are in a mutualism (biology), mutualistic relationship. Examples are nitrogen-fixing bacteria (called rhizobia), whi ...
in the form of
kleptoplasty Kleptoplasty or kleptoplastidy is a process in symbiosis, symbiotic relationships whereby plastids, notably chloroplasts from algae, are sequestered by the host. The word is derived from ''Kleptes'' (κλέπτης) which is Greek language, Greek ...
. Moreover, these “stolen” plastids can be further transferred to additional hosts, as seen in the case of predation of ''M. rubrum'' by dinoflagellate planktons of the genus ''Dinophysis''. In 2009, a new species of
Gram-negative bacteria Gram-negative bacteria are bacteria that, unlike gram-positive bacteria, do not retain the Crystal violet, crystal violet stain used in the Gram staining method of bacterial differentiation. Their defining characteristic is that their cell envelo ...
called ''Maritalea myrionectae'' was discovered from a
cell culture Cell culture or tissue culture is the process by which cell (biology), cells are grown under controlled conditions, generally outside of their natural environment. After cells of interest have been Cell isolation, isolated from living tissue, ...
of ''M. rubrum''.


Description

''M. rubrum'' is a free-living marine ciliate. It is reddish in colour and form dark-red mass during blooming. Its body is almost spherical, looking like a miniature
sunflower The common sunflower (''Helianthus annuus'') is a species of large annual forb of the daisy family Asteraceae. The common sunflower is harvested for its edible oily seeds, which are often eaten as a snack food. They are also used in the pr ...
with its radiating hair-like
cilia The cilium (: cilia; ; in Medieval Latin and in anatomy, ''cilium'') is a short hair-like membrane protrusion from many types of eukaryotic cell. (Cilia are absent in bacteria and archaea.) The cilium has the shape of a slender threadlike proj ...
on its body surface. It measures up to 100 μm in length and 75 μm in width. The body is superficially divided into two lobes due to formation of a constriction at the centre. The constriction gives rise to a larger anterior lobe and a smaller posterior lobe. The cilia arise from the constriction. Using the cilia it can jump about 10-20 times its body length in one movement. Its nucleus is prominently situated at the centre, and is surrounded by organelles mostly derived from algae. For example, its cytoplasm contains numerous plastids,
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
and other nuclei. These organelles are properly separated such that the mitochondria are fully enclosed in a vacuole membrane and two
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
membranes of the ciliate. This indicates that the ciliate is primarily a heterotroph, but after acquiring algal plastid, it transforms into an autotroph.


The endosymbiont

Genetic analysis showed that in the American coastal areas, the primary food of ''M. rubrum'' is the algae most closely related to the free-living '' Geminigera cryophila''. But in Japanese coasts, the major algal species is '' Teleaulax amphioxeia''. When these plastid-containing algae are ingested by the ciliate, they are not digested. The plastids remain functional and provide nutrition to the ciliate by photosynthesis. In order for the plastids to be normally active, they still require enzymes, which are synthesised by the sequestered algal nuclei. The single nucleus can survive and remain genetically active up to 30 days in the cytoplasm of the ciliate. As the retention time of the prey nuclei is short, an average ''M. rubrum'' cell may contain eight algal plastids per single prey nucleus and the nuclei need to be replaced by continuous feeding on fresh algae. Thus, the algal organelles are not permanently integrated.


References


External links


''Myrionecta rubra'' at PhytopediaWorld Register of Marine Species
{{Taxonbar, from=Q4044730 Mesodinium Endosymbiotic events Protists described in 1908 Marine biology Ciliate species