Meredith Graph
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the Meredith graph is a 4- regular
undirected graph In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' ve ...
with 70 vertices and 140 edges discovered by Guy H. J. Meredith in 1973. The Meredith graph is 4- vertex-connected and 4- edge-connected, has
chromatic number In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices ...
3,
chromatic index In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blu ...
5, radius 7, diameter 8, girth 4 and is non-Hamiltonian. It has
book thickness In graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings into a ''book'', a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie ...
3 and
queue number In the mathematical field of graph theory, the queue number of a graph is a graph invariant defined analogously to stack number (book thickness) using first-in first-out (queue) orderings in place of last-in first-out (stack) orderings. Defi ...
2. Published in 1973, it provides a counterexample to the
Crispin Nash-Williams Crispin St John Alvah Nash-Williams FRSE (19 December 1932 – 20 January 2001) was a British mathematician. His research interest was in the field of discrete mathematics, especially graph theory. Biography Nash-Williams was born on 19 Dece ...
conjecture that every 4-regular 4-vertex-connected graph is Hamiltonian. However,
W. T. Tutte William Thomas Tutte OC FRS FRSC (; 14 May 1917 – 2 May 2002) was an English and Canadian codebreaker and mathematician. During the Second World War, he made a brilliant and fundamental advance in cryptanalysis of the Lorenz cipher, a majo ...
showed that all 4-connected planar graphs are hamiltonian.Tutte, W.T., ed., Recent Progress in Combinatorics. Academic Press, New York, 1969. The characteristic polynomial of the Meredith graph is (x-4) (x-1)^ x^ (x+1)^ (x+3) (x^2-13) (x^6-26 x^4+3 x^3+169 x^2-39 x-45)^4.


Gallery

Image:Meredith graph 3COL.svg, The
chromatic number In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices ...
of the Meredith graph is 3. Image:Meredith graph 5color edge.svg, The
chromatic index In graph theory, an edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blu ...
of the Meredith graph is 5.


References

{{reflist Individual graphs Regular graphs