HOME

TheInfoList



OR:

Membrane curvature is the geometrical measure or characterization of the
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
of
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. B ...
s. The membranes can be naturally occurring or man-made (synthetic). An example of naturally occurring membrane is the
lipid bilayer The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many vir ...
of cells, also known as cellular membranes. Synthetic membranes can be obtained by preparing aqueous solutions of certain lipids. The lipids will then "aggregate" and form various phases and structures. According to the conditions (concentration, temperature, ionic strength of solution, etc.) and the chemical structures of the lipid, different phases will be observed. For instance, the lipid
POPC POPC is a phosphatidylcholine. It is a diacylglycerol and phospholipid. The full name is 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. It is an important phospholipid for biophysical experiments and has been used to study various subjects su ...
(palmitoyl oleyl phosphatidyl choline) tends to form lamellar vesicles in solution, whereas smaller lipids (lipids with shorter acyl chains, up to 8
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
s in length), such as detergents, will form
micelles A micelle () or micella () (plural micelles or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloid, colloidal suspension (also known as associat ...
if the CMC (
critical micelle concentration In colloidal and surface chemistry, the critical micelle concentration (CMC) is defined as the concentration of surfactants above which micelles form and all additional surfactants added to the system will form micelles. The CMC is an important ch ...
) was reached. There are five commonly proposed mechanisms by which membrane curvature is created, maintained, or controlled: lipid composition, shaped transmembrane proteins, protein motif insertion/BAR domains, protein scaffolding, and cytoskeleton scaffolding.


Geometry

A
biological membrane A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the ce ...
is commonly described as a two-dimensional surface, which spans a three-dimensional space. So, to describe membrane shape, it is not sufficient to determine the membrane curling that is seen in a single cross-section of the object, because in general there are two curvatures that characterize the shape each point in space. Mathematically, these two curvatures are called the principal curvatures, c_1 and c_2, and their meaning can be understood by the following thought experiment. If you cross-section the membrane surface at a point under consideration using two planes that are perpendicular to the surface and oriented in two special directions called the principal directions, the principal curvatures are the curvatures of the two lines of intercepts between the planes and the surface which have almost circular shapes in close proximity to the point under consideration. The radii of these two circular fragments, R_1 and R_2, are called the principal radii of curvature, and their inverse values are referred to as the two principal curvatures. c_1 = 1/R_1 c_2 = 1/R_2 The principal curvatures c_1 and c_2 can vary arbitrarily and thereby give origin to different geometrical shapes, such as cylinder, plane, sphere and saddle. Analysis of the principal curvature is important, since a number of biological membranes possess shapes that are analogous to these common geometry staples. For instance,
prokaryotic A prokaryote () is a Unicellular organism, single-celled organism that lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek language, Greek wikt:πρό#Ancient Greek, πρό (, 'before') a ...
cells such as
cocci A coccus (plural cocci) is any bacterium or archaeon that has a spherical, ovoid, or generally round shape. Bacteria are categorized based on their shapes into three classes: cocci (spherical-shaped), bacillus (rod-shaped) and spiral ( of whi ...
, rods, and spirochette display the shape of a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
, and the latter two the shape of a
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infin ...
. Erythrocytes, commonly referred to as
red blood cells Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek language, Greek ''erythros'' for "red" and ''k ...
, have the shape of a saddle, although these cells are capable of some shape deformation. The table below lists common geometric shapes and a qualitative analysis of their two principal curvatures. Even though often membrane curvature is thought to be a completely
spontaneous process In thermodynamics, a spontaneous process is a process which occurs without any external input to the system. A more technical definition is the time-evolution of a system in which it releases free energy and it moves to a lower, more thermodynamica ...
, thermodynamically speaking there must be factors actuating as the driving force for
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
to exist. Currently, there are some postulated mechanisms for accepted theories on curvature; nonetheless, undoubtedly two of the major driving forces are
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include ...
composition and
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s embedded and/or bound to membranes.


Induced by lipids


Dynamics

Perhaps the most simple and intuitive driving force in membrane curvature is the natural spontaneous
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
exhibited by some
lipids Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include ...
. This is because, depending on their chemical structures, lipids tend to curve with a slight spontaneously negative or positive curvature. Lipids such as DOPC (dioleoyl phosphatidyl choline),
diacyl glycerol A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. DAGs can act as sur ...
, dioleoyl phosphatidyl ethanolamine (DOPE) and
cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell mem ...
exhibit a negative spontaneous curvature. On the other hand, lipids with smaller acyl chain area to polar head group area ratio tend to curve positively, in other words they exhibit positive spontaneous curvature. The table below lists experimentally determined spontaneous curvatures for different lipids in DOPE. The energy requirements to generate a cylinder shaped cell from an originally flat membrane can be expressed as = \pi LK_b(\frac - 2J_B) where L is the length of the cylinder, JB is the difference between the spontaneous curvature, Js, for the lipids in the inner and outer leaflet divided by two, and Kb is the bending modulus of the bilayer. The radii of membrane cylinders that form in intracellular membrane-transport pathways are typically ~25–30 nm. So, the spontaneous curvature necessary to generate such cylinders equals ~(1/50) nm–1. As JB results from a difference in the spontaneous curvatures of the
monolayer A monolayer is a single, closely packed layer of atoms, molecules, or cells. In some cases it is referred to as a self-assembled monolayer. Monolayers of layered crystals like graphene and molybdenum disulfide are generally called 2D materials. ...
s, an unusual membrane lipid composition would be required to produce such curvature. The lipids cholesterol, DOPE and diacylglycerol are characterized by strongly negative spontaneous curvatures (figure 1) and therefore have the potential to generate a large membrane curvature. However, even for these lipids, the required JB can be reached only if they are extensively concentrated in the internal monolayer.


Clustering

Multiple factors influence whether a lipid will exhibit positive or negative curvature. For example, the presence of
double bonds In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist betw ...
in the tail of a lipid will increase the occupied space of the tail, and thus increase the lipid's propensity to induce negative curvature. In the figure, the different shape of lipids with a double bond - also known as unsaturated - can be visualized. However, a single conically shaped lipid will not induce curvature across an entire region of the membrane. Instead, clustering of similarly shaped lipids in one leaflet compared to the other is required to induce curvature. This difference in lipid composition between leaflets is actively formed and controlled within cells by proteins such as flippases, or removed to discourage curvature by proteins such as
scramblases Scramblase is a protein responsible for the translocation of phospholipids between the two monolayers of a lipid bilayer of a cell membrane. In humans, phospholipid scramblases (PLSCRs) constitute a family of five homologous proteins th ...
. When asymmetric lipid compositions are present and the membrane is unable to curve due to other surrounding factors, the membrane is destabilized - further supporting the crucial role that lipid composition plays in membrane curvature. When the membrane does curve, a higher number of lipids will be required to be present on the positive curvature side of the membrane to cover the increased surface area that is present compared to the negatively curved side.


Induced by proteins

Some biologically occurring lipids do exhibit spontaneous curvature which could explain the shapes of biological membranes. Nevertheless, calculations show that spontaneous lipid curvature alone is either insufficient or would require conditions that are unrealistic to drive the degree of curvature observed in most
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
s. It is now known that lipid curvature is "aided" by protein structures in order to generate complete cellular curvature.


Clustering

Transmembrane proteins A transmembrane protein (TP) is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequentl ...
with an inherently conical shape will be more stable in, and induce curvature in membranes. Depending on the shape of the protein, this can induce either positive or negative curvature. An example is the
voltage-gated potassium channel Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized ce ...
having a larger diameter on the outer leaflet than the inner leaflet of the membrane. As seen in the figure, the larger amount of space taken up in the one leaflet causes the membrane to curve away from that side. Not only does the protein effect membrane curvature, but membrane curvature can affect membrane proteins as well. Conically shaped proteins will be less stable in membranes that are constrained to be planar, and cylindrically shaped proteins will be less stable in membranes that are constrained to have high curvature. Thus, as highly curved
vesicles Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
are formed from relatively planar membranes, proteins can be either included or excluded from the forming vesicles based on their shape.


Motif insertion

The hydrophobic portion of protein can act as "wedge" when inserting into lipid bilayer.
Epsin Epsins are a family of highly conserved membrane proteins that are important in creating membrane curvature. Epsins contribute to membrane deformations like endocytosis, and block Vesicle (biology), vesicle formation during mitosis. Structure E ...
is one example that utilizes this mechanism to drive membrane bending. Epsin has several
amphipathic An amphiphile (from the Greek αμφις amphis, both, and φιλíα philia, love, friendship), or amphipath, is a chemical compound possessing both hydrophilic (''water-loving'', polar) and lipophilic (''fat-loving'') properties. Such a compoun ...
alpha helices The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ear ...
that allows it to partition between the hydrophobic core of the membrane and surrounding aqueous, hydrophilic environment. Another interesting characteristic of epsin and other proteins that bind to membranes is the fact that it shows high binding affinity for a fairly common membrane lipid,
phosphatidylinositol 4,5-bisphosphate Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)''P''2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)''P''2 is enriched at the plasma membrane where it is a substrate for a number of ...
(PI-4,5-P2). Unlike other proteins that simply bend the membrane through sheer rigidity, epsin is a globular soluble protein and thus not rigid. The insertion of its helices into the membrane force the neighboring lipids of the leaflet that has been bound to expand laterally. This displacement of lipids on only one of the leaflets increases the bilayer's curvature. This figure shows membrane bending by insertion of a hydrophobic protein motif into a lipid bilayer. The figure illustrates a slightly different mechanism. In this case, the membrane-bending protein does not exhibit intrinsic rigidity. Instead they are often
globular A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of member ...
and soluble. The protein epsin is an example. Epsin has an ENTH (epsin N-terminal homology) domain which inserts its amphipathic
alpha helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues e ...
into the membrane. Epsin has high binding affinity for the membrane if PI-4,5-P2 is present.


BAR domains

Another example of protein interactions that directly affect membrane curvature is that of the
BAR Bar or BAR may refer to: Food and drink * Bar (establishment), selling alcoholic beverages * Candy bar * Chocolate bar Science and technology * Bar (river morphology), a deposit of sediment * Bar (tropical cyclone), a layer of cloud * Bar (u ...
(Bin, amphiphysin, Rvs’) domain. The BAR domain is present in a large family of proteins. Relative to the cellular lipid bilayer, this domain is rigid and exhibits a "banana" shape. It has been postulated that the positively charged
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
residues in the concave region of the BAR domain would come into contact with the negatively charged polar head groups of lipids in the bilayer, thus allows the binding process. Upon binding, the membrane's curvature is increased by the rigid domain. This figure shows the bending of a membrane by a banana-shape like BAR domain. In the figure, an illustration of a BAR domain present in a number of proteins. The membrane curvature is induced by the very shape of this proteic region. This domain attaches to the lipid bilayer through strong coulombic interactions. This idea is supported by the existence of positively charged amino acid residues in the concave region of the BAR domain. These amino acids would come into contact with the negatively charged polar head groups of lipids in the bilayer. This form phenomenon is also referred to as the "scaffold mechanism".


Scaffolding

A classical example of membrane bending by rigid protein scaffold is
clathrin Clathrin is a protein that plays a major role in the formation of coated vesicles. Clathrin was first isolated and named by Barbara Pearse in 1976. It forms a triskelion shape composed of three clathrin heavy chains and three light chains. Whe ...
. Clathrin is involved in cellular endocytosis and is sequestrated by specific signaling molecules. Clathrin can attach to adaptor protein complexes on the cellular membrane, and it polymerizes into lattices to drive greater curvature, resulting in endocytosis of a vesicular unit. Coat protein complex I (
COP1 ''For the membrane coated vesicle used in transport, see here.'' Fagol Caspase recruitment domain-containing protein 16 is an enzyme that in humans is encoded by the ''CARD16'' gene In biology, the word gene (from , ; "...Wilhelm Johannse ...
) and coat protein complex II (
COPII The Coat Protein Complex II, or COPII, is a group of proteins that facilitate the formation of vesicles to transport proteins from the endoplasmic reticulum to the Golgi apparatus or endoplasmic-reticulum–Golgi intermediate compartment. This ...
) follow similar mechanism in driving membrane curvature. This figure shows a protein coating that induces curvature. As mentioned above, proteins such as
clathrin Clathrin is a protein that plays a major role in the formation of coated vesicles. Clathrin was first isolated and named by Barbara Pearse in 1976. It forms a triskelion shape composed of three clathrin heavy chains and three light chains. Whe ...
are recruited to the membrane through signaling molecules and assemble into larger polymeric structures that form a rigid structure which serves as a frame for the membrane. Clathrin binds to its receptors that are present in the membrane. The figure shows a protein coating that induces curvature. As mentioned above, proteins such as
clathrin Clathrin is a protein that plays a major role in the formation of coated vesicles. Clathrin was first isolated and named by Barbara Pearse in 1976. It forms a triskelion shape composed of three clathrin heavy chains and three light chains. Whe ...
are recruited to the membrane through signaling molecules and assemble into larger polymeric structures that form a rigid structure which serves as a frame for the membrane. Clathrin binds to its receptors that are present in the membrane.


Cytoskeleton

The overall shape of a cell is mostly determined by its cytoskeletal structure. This shape will vary widely depending on the location and function of the cell. The cell membrane must be able to curve around and fit the shape determined by these functions. This requires the membrane to be
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
enough to do so in a stable manner, and is often stabilized by the other mechanisms listed in this article, in particular lipid composition. Mammalian cells will usually remain the roughly the same shape, with a common exception being locomotive cells. In order to move, these cells will often modify their structure via
lamellipodia The lamellipodium (plural lamellipodia) (from Latin ''lamella'', related to ', "thin sheet", and the Greek radical ''pod-'', "foot") is a cytoskeletal protein actin projection on the leading edge of the cell. It contains a quasi-two-dimensional ...
and
filopodia Filopodia (singular filopodium) are slender cytoplasmic projections that extend beyond the leading edge of lamellipodia in migrating cells. Within the lamellipodium, actin ribs are known as ''microspikes'', and when they extend beyond the lame ...
. The membrane must be able to actively adapt to these changing curvature restraints in order for the cell to move effectively and without damaging the cell membrane.


Crowding

The protein
crowding Crowding (or visual crowding) is a perceptual Perception () is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information or environment. All perception inv ...
mechanism hypothesizes that proteins can bend membrane without directly perturbing membrane structures like the above mechanisms. When a high enough local concentration of protein is present on membrane surface, repulsion between protein molecules on the membrane surface can induce membrane curvature. Although contribution of this mechanism remains unclear, multiple experimental and computation evidences have shown its potential in bending membrane. A recent study even shows that protein crowding can cause membrane bending and leads to membrane fission. These studies suggest that high local protein concentration can overcome the
energy barrier In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules pe ...
to bend lipid membrane, and thus can contribute to membrane bending.


References

{{Reflist, 30em Membrane biology