HOME

TheInfoList



OR:

Meganucleases are
endodeoxyribonucleases Endodeoxyribonuclease are both endonucleases and deoxyribonucleases. They catalyze cleavage of the phosphodiester bonds in DNA. They are classified with EC numbers 3.1.21 through 3.1.25. Examples include: * DNA restriction enzymes * micrococca ...
characterized by a large recognition site (double-stranded DNA sequences of 12 to 40 base pairs); as a result this site generally occurs only once in any given
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ge ...
. For example, the 18-base pair sequence recognized by the I-SceI meganuclease would on average require a genome twenty times the size of the
human genome The human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the n ...
to be found once by chance (although sequences with a single mismatch occur about three times per human-sized genome). Meganucleases are therefore considered to be the most specific naturally occurring
restriction enzyme A restriction enzyme, restriction endonuclease, REase, ENase or'' restrictase '' is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class o ...
s. Among meganucleases, the LAGLIDADG family of
homing endonucleases The homing endonucleases are a collection of endonucleases encoded either as freestanding genes within introns, as fusions with host proteins, or as self-splicing inteins. They catalyze the hydrolysis of genomic DNA within the cells that synth ...
has become a valuable tool for the study of genomes and
genome engineering Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts g ...
over the past fifteen years. Meganucleases are "molecular DNA scissors" that can be used to replace, eliminate or modify sequences in a highly targeted way. By modifying their
recognition sequence A recognition sequence is a DNA sequence to which a structural motif of a DNA-binding domain exhibits binding specificity. Recognition sequences are palindromes. The transcription factor Sp1 for example, binds the sequences 5'-(G/T)GGGCGG(G/A)(G/ ...
through protein engineering, the targeted sequence can be changed. Meganucleases are used to modify all genome types, whether bacterial, plant or animal. They open up wide avenues for innovation, particularly in the field of human health, for example the elimination of viral genetic material or the "repair" of damaged genes using gene therapy.


Two main families

Meganucleases are found in a large number of organisms – ''
Archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
'' or archaebacteria, bacteria,
phages A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacterio ...
, fungi,
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitut ...
,
algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular mic ...
and some plants. They can be expressed in different compartments of the cell – the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
,
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
or
chloroplast A chloroplast () is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in ...
s. Several hundred of these
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
s have been identified. Meganucleases are mainly represented by two main enzyme families collectively known as homing endonucleases: intron endonucleases and intein endonucleases. In nature, these proteins are encoded by mobile genetic elements,
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene. ...
s or inteins. Introns propagate by intervening at a precise location in the DNA, where the expression of the meganuclease produces a break in the complementary intron- or intein-free
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chro ...
. For inteins and group I introns, this break leads to the duplication of the intron or intein at the cutting site by means of the
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
repair for double-stranded DNA breaks. We know relatively little about the actual purpose of meganucleases. It is widely thought that the genetic material that encodes meganucleases functions as a parasitic element that uses the double-stranded DNA cell repair mechanisms to its own advantage as a means of multiplying and spreading, without damaging the genetic material of its host.


Homing endonucleases from the LAGLIDADG family

There are five families, or classes, of homing endonucleases. The most widespread and best known is the LAGLIDADG family. LAGLIDADG family endonucleases are mostly found in the mitochondria and chloroplasts of eukaryotic unicellular organisms. The name of this family corresponds to an amino acid sequence (or motif) that is found, more or less conserved, in all the proteins of this family. These small proteins are also known for their compact and closely packed three-dimensional structures. The best characterized endonucleases which are most widely used in research and genome engineering include I-SceI (discovered in the mitochondria of baker's yeast ''Saccharomyces cerevisiae''),
I-CreI I-''Cre''I is a homing endonuclease whose gene was first discovered in the chloroplast genome of ''Chlamydomonas reinhardtii'', a species of unicellular green algae. It is named for the facts that: it resides in an Intron; it was isolated from '' ...
(from the chloroplasts of the green algae ''Chlamydomonas reinhardtii'') and I-DmoI (from the archaebacterium ''Desulfurococcus mobilis''). The best known LAGLIDADG endonucleases are homodimers (for example I-CreI, composed of two copies of the same protein domain) or internally symmetrical monomers (I-SceI). The DNA binding site, which contains the
catalytic domain In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate (binding site) a ...
, is composed of two parts on either side of the cutting point. The half-binding sites can be extremely similar and bind to a palindromic or semi-palindromic DNA sequence (I-CreI), or they can be non-palindromic (I-SceI).


As tools for genome engineering

The high specificity of meganucleases gives them a high degree of precision and much lower cell toxicity than other naturally occurring restriction enzymes. Meganucleases were identified in the 1990s, and subsequent work has shown that they are particularly promising tools for
genome engineering Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts g ...
and gene editing, as they are able to efficiently induce homologous recombination, generate mutations, and alter reading frames. However, the meganuclease-induced genetic recombinations that could be performed were limited by the repertoire of meganucleases available. Despite the existence of hundreds of meganucleases in nature, and the fact that each one is able to tolerate minor variations in its recognition site, the probability of finding a meganuclease able to cut a given gene at the desired location is extremely slim. Several groups turned their attention to engineering new meganucleases that would target the desired recognition sites. The most advanced research and applications concern homing endonucleases from the LAGLIDADG family. To create tailor-made meganucleases, two main approaches have been adopted: * Modifying the specificity of existing meganucleases by introducing a small number of variations to the amino acid sequence and then selecting the functional proteins on variations of the natural recognition site. * A more radical option has been to exploit a property that plays an important role in meganucleases’ naturally high degree of diversification: the possibility of associating or fusing protein domains from different enzymes. This option makes it possible to develop chimeric meganucleases with a new recognition site composed of a half-site of meganuclease A and a half-site of protein B. By fusing the protein domains of I-DmoI and I-CreI, two chimeric meganucleases have been created using this method: E-Drel and DmoCre. These two approaches can be combined to increase the possibility of creating new enzymes, while maintaining a high degree of efficacy and specificity. The scientists from Cellectis have been working on gene editing since 1999 and have developed a collection of over 20,000 protein domains from the homodimeric meganuclease I-CreI as well as from other meganucleases scaffolds. They can be combined to form functional chimeric tailor-made heterodimers for research laboratories and for industrial purposes. Precision Biosciences, another biotechnology company, has developed a fully rational design process called Directed Nuclease Editor (DNE) which is capable of creating engineered meganucleases that target and modify a user-defined location in a genome. In 2012 researchers at
Bayer CropScience Bayer AG (, commonly pronounced ; ) is a German multinational pharmaceutical and biotechnology company and one of the largest pharmaceutical companies in the world. Headquartered in Leverkusen, Bayer's areas of business include pharmaceutica ...
used DNE to incorporate a gene sequence into the DNA of cotton plants, targeting it precisely to a predetermined site.


Additional applications

One recent advance in the use of meganucleases for genome engineering is the incorporation of the DNA binding domain from transcription activator-like (TAL) effectors into hybrid nucleases. These "megaTALs" combine the ease of engineering and high DNA binding specificity of a TAL effector with the high cleavage efficiency of meganucleases. In addition, meganucleases have been fused to DNA end-processing enzymes in order to promote error-prone
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology direct ...
and to increase the frequency of mutagenic events at a given locus.


Probabilities

As stated in the opening paragraph, a meganuclease with an 18-base pair sequence would on average require a genome twenty times the size of the human genome to be found once by chance; the calculation is 418/3x109 = 22.9. However, very similar sequences are much more common, with frequency increasing quickly the more mismatches are permitted. For example, a sequence that is identical in all but one base pair would occur by chance once every 417/18x3x109 = 0.32 human genome equivalents on average, or three times per human genome. A sequence that is identical in all but two base pairs would on average occur by chance once every 416/(18C2)x3x109 = 0.0094 human genome equivalents, or 107 times per human genome. This is important because enzymes do not have perfect discrimination; a nuclease will still have some likelihood of acting even if the sequence does not match perfectly. So the activity of the nuclease on a sequence with one mismatch is ''less'' than the no-mismatch case, and activity is even less for two mismatches, but still not zero. Exclusion of these sequences, which are very similar but not identical, is still an important problem to be overcome in genome engineering.


Other considerations

DNA methylation DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts t ...
and
chromatin structure Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in r ...
affect the efficacy of meganuclease digestion. A thorough consideration of the genetic and epigenetic context of a target sequence is therefore necessary for the practical application of these enzymes. In December 2014, the
USPTO The United States Patent and Trademark Office (USPTO) is an agency in the U.S. Department of Commerce that serves as the national patent office and trademark registration authority for the United States. The USPTO's headquarters are in Alexa ...
issued patent 8,921,332 covering meganuclease-based genome editing in vitro. This patent was licensed exclusively to Cellectis.


See also

*
Homing endonuclease The homing endonucleases are a collection of endonucleases encoded either as freestanding genes within introns, as fusions with host proteins, or as self-splicing inteins. They catalyze the hydrolysis of genomic DNA within the cells that synthes ...
*
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
*
I-CreI I-''Cre''I is a homing endonuclease whose gene was first discovered in the chloroplast genome of ''Chlamydomonas reinhardtii'', a species of unicellular green algae. It is named for the facts that: it resides in an Intron; it was isolated from '' ...
*
Protein engineering Protein engineering is the process of developing useful or valuable proteins. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to imp ...
*
Protein design Protein design is the rational design of new protein molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function. Proteins can be designed from scratch (''de novo'' design) or by making calcula ...
*
Genome editing with engineered nucleases Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts g ...
*
Genome engineering Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts g ...
*
Genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including t ...


References

{{reflist


External links


CellectisPrecision BiosciencesExplanatory video about meganucleases
by Cellectis Biotechnology Genome editing