Mechanical explanations of gravitation (or kinetic theories of gravitation) are attempts to explain the action of
gravity
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
by aid of basic
mechanical
Mechanical may refer to:
Machine
* Machine (mechanical), a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement
* Mechanical calculator, a device used to perform the basic operations of ...
processes, such as
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
forces caused by
pushes, without the use of any
action at a distance
In physics, action at a distance is the concept that an object can be affected without being physically touched (as in mechanical contact) by another object. That is, it is the non-local interaction of objects that are separated in space.
Non- ...
. These theories were developed from the 16th until the 19th century in connection with the
aether. However, such models are no longer regarded as viable theories within the mainstream scientific community and
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
is now the standard model to describe gravitation without the use of actions at a distance. Modern "
quantum gravity" hypotheses also attempt to describe gravity by more fundamental processes such as particle fields, but they are not based on classical mechanics.
Screening
This theory is probably the best-known mechanical explanation, and was developed for the first time by
Nicolas Fatio de Duillier
Nicolas Fatio de Duillier (also spelled Faccio or Facio; 16 February 1664 – 10 May 1753) was a mathematician, natural philosopher, astronomer, inventor, and religious campaigner. Born in Basel, Switzerland, Fatio mostly grew up in the then- ...
in 1690, and re-invented, among others, by
Georges-Louis Le Sage
Georges-Louis Le Sage (; 13 June 1724 – 9 November 1803) was a Genevan physicist and is most known for his theory of gravitation, for his invention of an electric telegraph and his anticipation of the kinetic theory of gases. Furthermore, he ...
(1748),
Lord Kelvin
William Thomson, 1st Baron Kelvin, (26 June 182417 December 1907) was a British mathematician, mathematical physicist and engineer born in Belfast. Professor of Natural Philosophy at the University of Glasgow for 53 years, he did important ...
(1872), and
Hendrik Lorentz (1900), and criticized by
James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and li ...
(1875), and
Henri Poincaré (1908).
The theory posits that the
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
of gravity is the result of tiny
particle
In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass.
They vary greatly in size or quantity, from ...
s or
wave
In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
s moving at high speed in all directions, throughout the
universe
The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
. The intensity of the flux of particles is assumed to be the same in all directions, so an isolated object A is struck equally from all sides, resulting in only an inward-directed
pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
but no net directional force. With a second object B present, however, a fraction of the particles that would otherwise have struck A from the direction of B is intercepted, so B works as a shield, so-to-speak—that is, from the direction of B, A will be struck by fewer particles than from the opposite direction. Likewise, B will be struck by fewer particles from the direction of A than from the opposite direction. One can say that A and B are "shadowing" each other, and the two bodies are pushed toward each other by the resulting imbalance of forces.
This shadow obeys the inverse square law, because the imbalance of momentum flow over an entire spherical surface enclosing the object is independent of the size of the enclosing sphere, whereas the surface area of the sphere increases in proportion to the square of the radius. To satisfy the need for mass proportionality, the theory posits that a) the basic elements of matter are very small so that gross matter consists mostly of empty space, and b) that the particles are so small, that only a small fraction of them would be intercepted by gross matter. The result is, that the "shadow" of each body is proportional to the surface of every single element of matter.
''Criticism'': This theory was declined primarily for
thermodynamic
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of the ...
reasons because a shadow only appears in this model if the particles or waves are at least partly absorbed, which should lead to an enormous heating of the bodies. Also drag, ''i.e.'' the resistance of the particle streams in the direction of motion, is a great problem too. This problem can be solved by assuming superluminal speeds, but this solution largely increases the thermal problems and contradicts
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The laws ...
.
Vortex Theory
Because of his philosophical beliefs,
René Descartes
René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Ma ...
proposed in 1644 that no empty
space
Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually cons ...
can exist and that space must consequently be filled with
matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
. The parts of this matter tend to move in straight paths, but because they lie close together, they can not move freely, which according to Descartes implies that every motion is circular, so the
aether is filled with
vortices
In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in th ...
. Descartes also distinguishes between different forms and sizes of matter in which rough matter resists the circular movement more strongly than fine matter. Due to
centrifugal force
In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parall ...
, matter tends towards the outer edges of the vortex, which causes a condensation of this matter there. The rough matter cannot follow this movement due to its greater
inertia
Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
—so due to the pressure of the condensed outer matter those parts will be pushed into the center of the vortex. According to Descartes, this inward pressure is nothing other than gravity. He compared this mechanism with the fact that if a rotating, liquid filled vessel is stopped, the liquid goes on to rotate. Now, if one drops small pieces of light matter (e.g. wood) into the vessel, the pieces move to the middle of the vessel.
[Zehe (1980), Secondary sources]
Following the basic premises of Descartes,
Christiaan Huygens between 1669 and 1690 designed a much more exact vortex model. This model was the first theory of gravitation which was worked out mathematically. He assumed that the aether particles are moving in every direction, but were thrown back at the outer borders of the vortex and this causes (as in the case of Descartes) a greater concentration of fine matter at the outer borders. So also in his model the fine matter presses the rough matter into the center of the vortex. Huygens also found out that the centrifugal force is equal to the force, which acts in the direction of the center of the vortex (
centripetal force). He also posited that bodies must consist mostly of empty space so that the aether can penetrate the bodies easily, which is necessary for mass proportionality. He further concluded that the aether moves much faster than the falling bodies. At this time, Newton developed his theory of gravitation which is based on attraction, and although Huygens agreed with the mathematical formalism, he said the model was insufficient due to the lack of a mechanical explanation of the force law. Newton's discovery that gravity obeys the
inverse square law surprised Huygens and he tried to take this into account by assuming that the speed of the aether is smaller in greater distance.
[Van Lunteren (2002), Secondary sources]
''Criticism'':
Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the grea ...
objected to the theory because
drag must lead to noticeable deviations of the orbits which were not observed.
Another problem was that
moon
The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
s often move in different directions, against the direction of the vortex motion. He devotes most of Book II of the
Principia Mathematica
The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1913. ...
to the refutation of Descarteś vortex theory. Also, Huygens' explanation of the inverse square law is
circular
Circular may refer to:
* The shape of a circle
* ''Circular'' (album), a 2006 album by Spanish singer Vega
* Circular letter (disambiguation)
** Flyer (pamphlet), a form of advertisement
* Circular reasoning, a type of logical fallacy
* Circular ...
, because this means that the aether obeys
Kepler's third law
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbi ...
. But a theory of gravitation has to explain those laws and must not presuppose them.
Several British physicists developed
vortex atom theory in the late nineteenth century. However, the physicist,
William Thomson, 1st Baron Kelvin
William Thomson, 1st Baron Kelvin, (26 June 182417 December 1907) was a British mathematician, Mathematical physics, mathematical physicist and engineer born in Belfast. Professor of Natural Philosophy (Glasgow), Professor of Natural Philoso ...
, developed a quite distinct approach. Whereas Descartes had outlined three species of matter – each linked respectively to the emission, transmission, and reflection of light – Thomson developed a theory based on a unitary continuum.
The Cartesian vortex theory played an important role in the
Copernican sun centred theory and in the belief in a cosmos where exist a plurality of stars like the sun, surrounded by multiple planets orbiting around them.
Streams
In a 1675 letter to
Henry Oldenburg
Henry Oldenburg (also Henry Oldenbourg) FRS (c. 1618 as Heinrich Oldenburg – 5 September 1677), was a German theologian, diplomat, and natural philosopher, known as one of the creators of modern scientific peer review. He was one of the fo ...
, and later to
Robert Boyle
Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the founders of ...
, Newton wrote the following:
ravity is the result of“a condensation causing a flow of ether with a corresponding thinning of the ether density associated with the increased velocity of flow.” He also asserted that such a process was consistent with all his other work and Kepler's Laws of Motion. Newton's idea of a pressure drop associated with increased velocity of flow was mathematically formalised as
Bernoulli's principle
In fluid dynamics, Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. The principle is named after the Swiss mathematici ...
published in Daniel Bernoulli's book ''Hydrodynamica'' in 1738.
However, although he later proposed a second explanation (see section below), Newton's comments to that question remained ambiguous. In the third letter to Bentley in 1692 he wrote:
It is inconceivable that inanimate brute matter should, without the mediation of something else which is not material, operate upon and affect other matter, without mutual contact, as it must do if gravitation in the sense of Epicurus be essential and inherent in it. And this is one reason why I desired you would not ascribe 'innate gravity' to me. That gravity should be innate, inherent, and essential to matter, so that one body may act upon another at a distance, through a vacuum, without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity, that I believe no man who has in philosophical matters a competent faculty of thinking can ever fall into it. Gravity must be caused by an agent acting constantly according to certain laws; but whether this agent be material or immaterial, I have left to the consideration of my readers.
On the other hand, Newton is also well known for the phrase
Hypotheses non fingo
''Hypotheses non fingo'' (Latin for "I frame no hypotheses", or "I contrive no hypotheses") is a phrase used by Isaac Newton in an essay, " General Scholium", which was appended to the second (1713) edition of the '' Principia''.
Original remark
...
, written in 1713:
I have not as yet been able to discover the reason for these properties of gravity from phenomena, and I do not feign hypotheses. For whatever is not deduced from the phenomena must be called a hypothesis; and hypotheses, whether metaphysical or physical, or based on occult qualities, or mechanical, have no place in experimental philosophy. In this philosophy particular propositions are inferred from the phenomena, and afterwards rendered general by induction.
And according to the testimony of some of his friends, such as
Nicolas Fatio de Duillier
Nicolas Fatio de Duillier (also spelled Faccio or Facio; 16 February 1664 – 10 May 1753) was a mathematician, natural philosopher, astronomer, inventor, and religious campaigner. Born in Basel, Switzerland, Fatio mostly grew up in the then- ...
or
David Gregory, Newton thought that gravitation is based directly on divine influence.
Similar to Newton, but mathematically in greater detail,
Bernhard Riemann assumed in 1853 that the gravitational aether is an
incompressible fluid
In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An eq ...
and normal matter represents sinks in this aether. So if the aether is destroyed or absorbed proportionally to the masses within the bodies, a stream arises and carries all surrounding bodies into the direction of the central mass. Riemann speculated that the absorbed aether is transferred into another world or dimension.
Another attempt to solve the energy problem was made by
Ivan Osipovich Yarkovsky
Ivan Osipovich Yarkovsky ( pl, Jan Jarkowski) (24 May 1844, Asveya, Vitebsk Governorate – 22 January 1902, Heidelberg) was a Polish Russian civil engineer. Born from a Polish family in Asveya (Russian Empire, now Belarus), he worked for a Russ ...
in 1888. Based on his aether stream model, which was similar to that of Riemann, he argued that the absorbed aether might be converted into new matter, leading to a mass increase of the celestial bodies.
''Criticism'': As in the case of Le Sage's theory, the disappearance of energy without explanation violates the
energy conservation law
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be Conservation law, ''conserved'' over time. This law, first proposed and tested by Émilie du Chât ...
. Also some drag must arise, and no process which leads to a creation of matter is known.
Static pressure
Newton updated the second edition of ''Optics'' (1717) with another mechanical-ether theory of gravity. Unlike his first explanation (1675 - see Streams), he proposed a stationary aether which gets thinner and thinner nearby the celestial bodies. On the analogy of the
lift
Lift or LIFT may refer to:
Physical devices
* Elevator, or lift, a device used for raising and lowering people or goods
** Paternoster lift, a type of lift using a continuous chain of cars which do not stop
** Patient lift, or Hoyer lift, mobil ...
, a force arises, which pushes all bodies to the central mass. He minimized drag by stating an extremely low density of the gravitational aether.
Like Newton,
Leonhard Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
presupposed in 1760 that the gravitational aether loses density in accordance with the inverse square law. Similarly to others, Euler also assumed that to maintain mass proportionality, matter consists mostly of empty space.
''Criticism'': Both Newton and Euler gave no reason why the density of that static aether should change. Furthermore,
James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and li ...
pointed out that in this "hydrostatic" model "''the state of stress... which we must suppose to exist in the invisible medium, is 3000 times greater than that which the strongest steel could support''".
[Maxwell (1875, Attraction), Secondary sources]
Waves
Robert Hooke speculated in 1671 that gravitation is the result of all bodies emitting waves in all directions through the aether. Other bodies, which interact with these waves, move in the direction of the source of the waves. Hooke saw an analogy to the fact that small objects on a disturbed surface of water move to the center of the disturbance.
[Taylor (1876), Secondary sources]
A similar theory was worked out mathematically by
James Challis
James Challis FRS (12 December 1803 – 3 December 1882) was an English clergyman, physicist and astronomer. Plumian Professor of Astronomy and Experimental Philosophy and the director of the Cambridge Observatory, he investigated a wide ra ...
from 1859 to 1876. He calculated that the case of attraction occurs if the wavelength is large in comparison with the distance between the gravitating bodies. If the wavelength is small, the bodies repel each other. By a combination of these effects, he also tried to explain all other forces.
''Criticism'': Maxwell objected that this theory requires a steady production of waves, which must be accompanied by an infinite consumption of energy.
[Maxwell (1875), Secondary sources]
Challis himself admitted, that he hadn't reached a definite result due to the complexity of the processes.
Pulsation
Lord Kelvin
William Thomson, 1st Baron Kelvin, (26 June 182417 December 1907) was a British mathematician, mathematical physicist and engineer born in Belfast. Professor of Natural Philosophy at the University of Glasgow for 53 years, he did important ...
(1871) and
Carl Anton Bjerknes (1871) assumed that all bodies pulsate in the aether. This was in analogy to the fact that, if the pulsation of two spheres in a fluid is in phase, they will attract each other; and if the pulsation of two spheres is ''not'' in phase, they will repel each other. This mechanism was also used for explaining the nature of
electric charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
s. Among others, this hypothesis has also been examined by
George Gabriel Stokes
Sir George Gabriel Stokes, 1st Baronet, (; 13 August 1819 – 1 February 1903) was an Irish English physicist and mathematician. Born in County Sligo, Ireland, Stokes spent all of his career at the University of Cambridge, where he was the Luc ...
and
Woldemar Voigt
Woldemar Voigt (; 2 September 1850 – 13 December 1919) was a German physicist, who taught at the Georg August University of Göttingen. Voigt eventually went on to head the Mathematical Physics Department at Göttingen and was succeeded in ...
.
[Zenneck (1903), Secondary sources]
''Criticism'' : To explain universal gravitation, one is forced to assume that all pulsations in the universe are in phase—which appears very implausible. In addition, the aether should be incompressible to ensure that attraction also arises at greater distances.
And Maxwell argued that this process must be accompanied by a permanent new production and destruction of aether.
Other historical speculations
In 1690,
Pierre Varignon assumed that all bodies are exposed to pushes by aether particles from all directions, and that there is some sort of limitation at a certain distance from the Earth's surface which cannot be passed by the particles. He assumed that if a body is closer to the Earth than to the limitation boundary, then the body would experience a greater push from above than from below, causing it to fall toward the Earth.
In 1748,
Mikhail Lomonosov assumed that the effect of the aether is proportional to the complete surface of the elementary components of which matter consists (similar to Huygens and Fatio before him). He also assumed an enormous penetrability of the bodies. However, no clear description was given by him as to how exactly the aether interacts with matter so that the law of gravitation arises.
In 1821,
John Herapath
John Herapath (30 May 1790 – 24 February 1868) was an English physicist who gave a partial account of the kinetic theory of gases in 1820 though it was neglected by the scientific community at the time. He was the cousin of William Herapath, t ...
tried to apply his co-developed model of the
kinetic theory
Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to:
* Kinetic theory, describing a gas as particles in random motion
* Kinetic energy, the energy of an object that it possesses due to its motion
Art and ente ...
of gases on gravitation. He assumed that the aether is heated by the bodies and loses density so that other bodies are pushed to these regions of lower density.
However, it was shown by Taylor that the decreased density due to
thermal expansion
Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions.
Temperature is a monotonic function of the average molecular kinetic ...
is compensated for by the increased speed of the heated particles; therefore, no attraction arises.
Recent theorizing
These mechanical explanations for gravity never gained widespread acceptance, although such ideas continued to be studied occasionally by physicists until the beginning of the twentieth century, by which time it was generally considered to be conclusively discredited. However, some researchers outside the scientific mainstream still try to work out some consequences of those theories.
Le Sage's theory was studied by Radzievskii and Kagalnikova (1960), Shneiderov (1961), Buonomano and Engels (1976), Adamut (1982), Jaakkola (1996),
Tom Van Flandern (1999), and Edwards (2007). A variety of Le Sage models and related topics are discussed in Edwards, et al.
Gravity due to static pressure was recently studied by Arminjon.
References
Sources
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
{{Theories of gravitation
Theories of gravity
Aether theories
Natural philosophy
Obsolete theories in physics