HOME

TheInfoList



OR:

In mathematics, the max–min inequality is as follows: :For any function \ f : Z \times W \to \mathbb\ , :: \sup_ \inf_ f(z, w) \leq \inf_ \sup_ f(z, w)\ . When equality holds one says that , , and satisfies a strong max–min property (or a
saddle-point In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the functi ...
property). The example function \ f(z,w) = \sin( z + w )\ illustrates that the equality does not hold for every function. A theorem giving conditions on , , and which guarantee the saddle point property is called a
minimax theorem In the mathematical area of game theory, a minimax theorem is a theorem providing conditions that guarantee that the max–min inequality is also an equality. The first theorem in this sense is von Neumann's minimax theorem from 1928, which was c ...
.


Proof

Define g(z) \triangleq \inf_ f(z, w)\ . For all z \in Z, we get g(z) \leq f(z, w) for all w \in W by definition of the infimum being a lower bound. Next, for all w \in W , f(z, w) \leq \sup_ f(z, w) for all z \in Z by definition of the supremum being an upper bound. Thus, for all z \in Z and w \in W , g(z) \leq f(z, w) \leq \sup_ f(z, w) making h(w) \triangleq \sup_ f(z, w) an upper bound on g(z) for any choice of w \in W . Because the supremum is the least upper bound, \sup_ g(z) \leq h(w) holds for all w \in W . From this inequality, we also see that \sup_ g(z) is a lower bound on h(w) . By the greatest lower bound property of infimum, \sup_ g(z) \leq \inf_ h(w) . Putting all the pieces together, we get \sup_ \inf_ f(z, w) = \sup_ g(z) \leq \inf_ h(w) \leq \inf_ \sup_ f(z, w) which proves the desired inequality. \blacksquare


References

*


See also

*
Minimax theorem In the mathematical area of game theory, a minimax theorem is a theorem providing conditions that guarantee that the max–min inequality is also an equality. The first theorem in this sense is von Neumann's minimax theorem from 1928, which was c ...
{{DEFAULTSORT:Max-min inequality Mathematical optimization Inequalities