In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
and
cosmology
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount (lexicographer), Thomas Blount's ''Glossographia'', and in 1731 taken up in ...
, the mathematical universe hypothesis (MUH), also known as the ultimate ensemble theory and struogony (from
mathematical structure
In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional ...
, Latin: struō), is a speculative "
theory of everything
A theory of everything (TOE or TOE/ToE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all asp ...
" (TOE) proposed by cosmologist
Max Tegmark
Max Erik Tegmark (born 5 May 1967) is a Swedish-American physicist, cosmologist and machine learning researcher. He is a professor at the Massachusetts Institute of Technology and the president of the Future of Life Institute. He is also a scienti ...
.
Description
Tegmark's MUH is: ''Our external physical reality is a mathematical structure''.
That is, the physical universe is not merely ''described by'' mathematics, but ''is'' mathematics (specifically, a
mathematical structure
In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional ...
). Mathematical existence equals physical existence, and all structures that exist mathematically exist physically as well. Observers, including humans, are "self-aware substructures (SASs)". In any mathematical structure complex enough to contain such substructures, they "will subjectively perceive themselves as existing in a physically 'real' world".
The theory can be considered a form of
Pythagoreanism
Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the Ancient Greece, ancient Greek col ...
or
Platonism
Platonism is the philosophy of Plato and philosophical systems closely derived from it, though contemporary platonists do not necessarily accept all of the doctrines of Plato. Platonism had a profound effect on Western thought. Platonism at le ...
in that it proposes the existence of mathematical entities; a form of
mathematicism
Mathematicism is 'the effort to employ the formal structure and rigorous method of mathematics as a model for the conduct of philosophy'. or else it is the epistemological view that reality is fundamentally mathematical. The term has been appli ...
in that it denies that anything exists except mathematical objects; and a formal expression of
ontic structural realism
In the philosophy of science, structuralism (also known as scientific structuralism or as the structuralistic theory-concept) asserts that all aspects of reality are best understood in terms of empirical scientific constructs of entities and their ...
.
Tegmark claims that the hypothesis has no free parameters and is not observationally ruled out. Thus, he reasons, it is preferred over other theories-of-everything by
Occam's Razor
Occam's razor, Ockham's razor, or Ocham's razor ( la, novacula Occami), also known as the principle of parsimony or the law of parsimony ( la, lex parsimoniae), is the problem-solving principle that "entities should not be multiplied beyond neces ...
. Tegmark also considers augmenting the MUH with a second assumption, the computable universe hypothesis (CUH), which says that the mathematical structure that is our external physical reality is defined by
computable function
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do ...
s.
The MUH is related to Tegmark's categorization of four levels of the
multiverse
The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The di ...
.
This categorization posits a nested hierarchy of increasing diversity, with worlds corresponding to different sets of
initial conditions
In mathematics and particularly in dynamic systems, an initial condition, in some contexts called a seed value, is a value of an evolving variable at some point in time designated as the initial time (typically denoted ''t'' = 0). For ...
(level 1),
physical constants
A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that is generally believed to be both universal in nature and have constant value in time. It is contrasted with a mathematical constant, ...
(level 2), quantum branches (level 3), and altogether different equations or mathematical structures (level 4).
Criticisms and responses
Andreas Albrecht of
Imperial College
Imperial College London (legally Imperial College of Science, Technology and Medicine) is a public research university in London, United Kingdom. Its history began with Prince Albert, consort of Queen Victoria, who developed his vision for a cu ...
in London called it a "provocative" solution to one of the central problems facing physics. Although he "wouldn't dare" go so far as to say he believes it, he noted that "it's actually quite difficult to construct a theory where everything we see is all there is".
Definition of the ensemble
Jürgen Schmidhuber
Jürgen Schmidhuber (born 17 January 1963) is a German computer scientist most noted for his work in the field of artificial intelligence, deep learning and artificial neural networks. He is a co-director of the Dalle Molle Institute for Artif ...
argues that "Although Tegmark suggests that '... all mathematical structures are a priori given equal statistical weight,' there is no way of assigning equal non-vanishing probability to all (infinitely many) mathematical structures." Schmidhuber puts forward a more restricted ensemble which admits only universe representations describable by
constructive mathematics
In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove th ...
, that is,
computer program
A computer program is a sequence or set of instructions in a programming language for a computer to execute. Computer programs are one component of software, which also includes documentation and other intangible components.
A computer program ...
s; e.g., the
Global Digital Mathematics Library
The ''Global Digital Mathematics Library'' (GDML) is a project organized under the auspices of the International Mathematical Union (IMU) to establish a digital library focused on mathematics.
A working group was convened in September 2014, follow ...
and
Digital Library of Mathematical Functions
The Digital Library of Mathematical Functions (DLMF) is an online project at the National Institute of Standards and Technology (NIST) to develop a database of mathematical reference data for special functions and their applications. It is intend ...
,
linked open data
In computing, linked data (often capitalized as Linked Data) is structured data which is interlinked with other data so it becomes more useful through semantic queries. It builds upon standard Web technologies such as HTTP, RDF and URIs, but r ...
representations of
formalized fundamental theorems intended to serve as building blocks for additional mathematical results. He explicitly includes universe representations describable by non-halting programs whose output bits converge after finite time, although the convergence time itself may not be predictable by a halting program, due to the
undecidability of the
halting problem
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a g ...
.
In response, Tegmark notes
that a
constructive mathematics
In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove th ...
formalized measure of free parameter variations of physical dimensions, constants, and laws over all universes has not yet been constructed for the
string theory landscape
The string theory landscape or landscape of vacua refers to the collection of possible false vacua in string theory,The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10500. See M. Douglas, "The ...
either, so this should not be regarded as a "show-stopper".
Consistency with Gödel's theorem
It has also been suggested that the MUH is inconsistent with
Gödel's incompleteness theorem. In a three-way debate between Tegmark and fellow physicists
Piet Hut
Piet Hut (born September 26, 1952) is a Dutch-American astrophysicist, who divides his time between research in computer simulations of dense stellar systems and broadly interdisciplinary collaborations, ranging from other fields in natural scien ...
and Mark Alford,
the "secularist" (Alford) states that "the methods allowed by formalists cannot prove all the theorems in a sufficiently powerful system... The idea that math is 'out there' is incompatible with the idea that it consists of formal systems."
Tegmark's response
is to offer a new hypothesis "that only Gödel-complete (
fully decidable) mathematical structures have physical existence. This drastically shrinks the Level IV multiverse, essentially placing an upper limit on complexity, and may have the attractive side effect of explaining the relative simplicity of our universe." Tegmark goes on to note that although conventional theories in physics are Gödel-undecidable, the actual mathematical structure describing our world could still be Gödel-complete, and "could in principle contain observers capable of thinking about Gödel-incomplete mathematics, just as
finite-state digital computers can prove certain theorems about Gödel-incomplete formal systems like
Peano arithmetic
In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly u ...
." In
he gives a more detailed response, proposing as an alternative to MUH the more restricted "Computable Universe Hypothesis" (CUH) which only includes mathematical structures that are simple enough that Gödel's theorem does not require them to contain any undecidable or uncomputable theorems. Tegmark admits that this approach faces "serious challenges", including (a) it excludes much of the mathematical landscape; (b) the measure on the space of allowed theories may itself be uncomputable; and (c) "virtually all historically successful theories of physics violate the CUH".
Observability
Stoeger, Ellis, and Kircher note that in a true multiverse theory, "the universes are then completely disjoint and nothing that happens in any one of them is causally linked to what happens in any other one. This lack of any causal connection in such multiverses really places them beyond any scientific support". Ellis specifically criticizes the MUH, stating that an infinite ensemble of completely disconnected universes is "completely untestable, despite hopeful remarks sometimes made, see, e.g., Tegmark (1998)." Tegmark maintains that MUH is
testable
Testability is a primary aspect of Science and the Scientific Method and is a property applying to an empirical hypothesis, involves two components:
#Falsifiability or defeasibility, which means that counterexamples to the hypothesis are logicall ...
, stating that it predicts (a) that "physics research will uncover mathematical regularities in nature", and (b) by assuming that we occupy a typical member of the multiverse of mathematical structures, one could "start testing multiverse predictions by assessing how typical our universe is".
Plausibility of radical Platonism
The MUH is based on the radical Platonist view that math is an external reality.
However, Jannes
[Gil Jannes, "Some comments on 'The Mathematical Universe'", Found. Phys. 39, 397-406, 200]
arXiv:0904.0867
/ref> argues that "mathematics is at least in part a human construction", on the basis that if it is an external reality, then it should be found in some other animals
Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in ...
as well: "Tegmark argues that, if we want to give a complete description of reality, then we will need a language independent of us humans, understandable for non-human sentient entities, such as aliens and future supercomputers". Brian Greene
Brian Randolph Greene (born February 9, 1963) is a American theoretical physicist, mathematician, and string theorist. Greene was a physics professor at Cornell University from 19901995, and has been a professor at Columbia University since 1 ...
argues similarly: "The deepest description of the universe should not require concepts whose meaning relies on human experience or interpretation. Reality transcends our existence and so shouldn't, in any fundamental way, depend on ideas of our making."
However, there are many non-human entities, plenty of which are intelligent, and many of which can apprehend, memorise, compare and even approximately add numerical quantities. Several animals have also passed the mirror test of self-consciousness. But a few surprising examples of mathematical abstraction notwithstanding (for example, chimpanzees can be trained to carry out symbolic addition with digits, or the report of a parrot understanding a “zero-like concept”), all examples of animal intelligence
Animal cognition encompasses the mental capacities of non-human animals including insect cognition. The study of animal conditioning and learning used in this field was developed from comparative psychology. It has also been strongly influenc ...
with respect to mathematics are limited to basic counting abilities. He adds, "non-human intelligent beings should exist that understand the language of advanced mathematics. However, none of the non-human intelligent beings that we know of confirm the status of (advanced) mathematics as an objective language." In the paper "On Math, Matter and Mind" the secularist viewpoint examined argues that math is evolving over time, there is "no reason to think it is converging to a definite structure, with fixed questions and established ways to address them", and also that "The Radical Platonist position is just another metaphysical theory like solipsism... In the end the metaphysics just demands that we use a different language for saying what we already knew." Tegmark responds that "The notion of a mathematical structure is rigorously defined in any book on Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the s ...
", and that non-human mathematics would only differ from our own "because we are uncovering a different part of what is in fact a consistent and unified picture, so math is converging in this sense." In his 2014 book on the MUH, Tegmark argues that the resolution is not that we invent the language of mathematics, but that we discover the structure of mathematics.
Coexistence of all mathematical structures
Don Page has argued that "At the ultimate level, there can be only one world and, if mathematical structures are broad enough to include all possible world
A possible world is a complete and consistent way the world is or could have been. Possible worlds are widely used as a formal device in logic, philosophy, and linguistics in order to provide a semantics for intensional logic, intensional and mod ...
s or at least our own, there must be one unique mathematical structure that describes ultimate reality. So I think it is logical nonsense to talk of Level 4 in the sense of the co-existence of all mathematical structures." This means there can only be one mathematical corpus. Tegmark responds that "This is less inconsistent with Level IV than it may sound, since many mathematical structures decompose into unrelated substructures, and separate ones can be unified."
Consistency with our "simple universe"
Alexander Vilenkin
Alexander Vilenkin (russian: Алекса́ндр Виле́нкин; uk, Олександр Віленкін; born 13 May 1949) is the Leonard Jane Holmes Bernstein Professor of Evolutionary Science and Director of the Institute of Cosmology a ...
comments[A. Vilenkin (2006) ''Many Worlds in One: The Search for Other Universes''. Hill and Wang, New York.] that "The number of mathematical structures increases with increasing complexity, suggesting that 'typical' structures should be horrendously large and cumbersome. This seems to be in conflict with the beauty and simplicity of the theories describing our world". He goes on to note that Tegmark's solution to this problem, the assigning of lower "weights" to the more complex structures seems arbitrary ("Who determines the weights?") and may not be logically consistent ("It seems to introduce an additional mathematical structure, but all of them are supposed to be already included in the set").
Occam's razor
Tegmark has been criticized as misunderstanding the nature and application of Occam's razor
Occam's razor, Ockham's razor, or Ocham's razor ( la, novacula Occami), also known as the principle of parsimony or the law of parsimony ( la, lex parsimoniae), is the problem-solving principle that "entities should not be multiplied beyond neces ...
; Massimo Pigliucci
Massimo Pigliucci (; born January 16, 1964) is Professor of Philosophy at the City College of New York, former co-host of the '' Rationally Speaking Podcast'', and former editor in chief for the online magazine ''Scientia Salon''. He is a critic o ...
reminds that "Occam's razor is just a useful heuristic
A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, ...
, it should never be used as the final arbiter to decide which theory is to be favored".
See also
*Abstract object theory
Abstract object theory (AOT) is a branch of metaphysics regarding abstract objects. Originally devised by metaphysician Edward Zalta in 1981, the theory was an expansion of mathematical Platonism.
Overview
''Abstract Objects: An Introduction to ...
*Anthropic principle
The anthropic principle, also known as the "observation selection effect", is the hypothesis, first proposed in 1957 by Robert Dicke, that there is a restrictive lower bound on how statistically probable our observations of the universe are, beca ...
*Church–Turing thesis
In computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a thesis about the nature of comp ...
*Digital physics
Digital physics is a speculative idea that the universe can be conceived of as a vast, digital computation device, or as the output of a deterministic or probabilistic computer program. The hypothesis that the universe is a digital computer was p ...
**Pancomputationalism
Digital physics is a speculative idea that the universe can be conceived of as a vast, digital computation device, or as the output of a deterministic or probabilistic computer program. The hypothesis that the universe is a digital computer was ...
* Impossible world
*Mathematicism
Mathematicism is 'the effort to employ the formal structure and rigorous method of mathematics as a model for the conduct of philosophy'. or else it is the epistemological view that reality is fundamentally mathematical. The term has been appli ...
*Modal realism
Modal realism is the view propounded by philosopher David Lewis that all possible worlds are real in the same way as is the actual world: they are "of a kind with this world of ours." It is based on the following tenets: possible worlds exist; p ...
*Ontology
In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality.
Ontology addresses questions like how entities are grouped into categories and which of these entities exis ...
*''Permutation City
''Permutation City'' is a 1994 science-fiction novel by Greg Egan that explores many concepts, including quantum ontology, through various philosophical aspects of artificial life and simulated reality. Sections of the story were adapted from E ...
''
* Russell K. Standish
* Structuralism (philosophy of science)
*""
References
Sources
*''Our Mathematical Universe
''Our Mathematical Universe: My Quest for the Ultimate Nature of Reality'' is a 2014 nonfiction book by the Swedish-American cosmologist Max Tegmark. Written in popular science format, the book interweaves what a ''New York Times'' reviewer call ...
'': written by Max Tegmark
Max Erik Tegmark (born 5 May 1967) is a Swedish-American physicist, cosmologist and machine learning researcher. He is a professor at the Massachusetts Institute of Technology and the president of the Future of Life Institute. He is also a scienti ...
and published on January 7, 2014, this book describes Tegmark's theory.
Further reading
* Schmidhuber, J. (1997)
A Computer Scientist's View of Life, the Universe, and Everything
in C. Freksa, ed., ''Foundations of Computer Science: Potential - Theory - Cognition''. Lecture Notes in Computer Science, Springer: p. 201-08.
*
*
*Tegmark, Max (2014), ''Our Mathematical Universe: My Quest for the Ultimate Nature of Reality'', {{ISBN, 978-0-307-59980-3
* Woit, P. (17 January 2014),
Book Review: 'Our Mathematical Universe' by Max Tegmark
, ''The Wall Street Journal
''The Wall Street Journal'' is an American business-focused, international daily newspaper based in New York City, with international editions also available in Chinese and Japanese. The ''Journal'', along with its Asian editions, is published ...
''.
*Hamlin, Colin (2017). "Towards a Theory of Universes: Structure Theory and the Mathematical Universe Hypothesis". ''Synthese'' 194 (581–591). https://link.springer.com/article/10.1007/s11229-015-0959-y
External links
*Jürgen Schmidhuber
Jürgen Schmidhuber (born 17 January 1963) is a German computer scientist most noted for his work in the field of artificial intelligence, deep learning and artificial neural networks. He is a co-director of the Dalle Molle Institute for Artif ...
The ensemble of universes describable by constructive mathematics.
with links to his technical and popular writings.
(and archives). Discusses the idea that all possible universes exist.
Is the universe actually made of math?
Interview with Max Tegmark in ''Discover Magazine
''Discover'' is an American general audience science magazine launched in October 1980 by Time Inc. It has been owned by Kalmbach Publishing since 2010.
History
Founding
''Discover'' was created primarily through the efforts of ''Time'' mag ...
''.
Richard Carrier Blogs: Our Mathematical Universe
Interview with Sam Harris
Tegmark and Harris discuss efficacy of mathematics, multiverses, artificial intelligence.
Ontology
Abstract object theory
Theoretical physics
Physical cosmology
Multiverse