
Theoretical astronomy is the use of
analytical and
computational models based on principles from physics and chemistry to describe and explain
astronomical object
An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
s and astronomical phenomena. Theorists in astronomy endeavor to create theoretical models and from the results predict observational consequences of those models. The observation of a phenomenon predicted by a model allows astronomers to select between several alternate or conflicting models as the one best able to describe the phenomena.
Ptolemy
Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
's ''
Almagest'', although a brilliant treatise on theoretical
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
combined with a practical handbook for computation, nevertheless includes compromises to reconcile discordant observations with a
geocentric model
In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded scientific theories, superseded description of the Universe with Earth at the center. Under most geocentric m ...
. Modern theoretical astronomy is usually assumed to have begun with the work of
Johannes Kepler
Johannes Kepler (27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, Natural philosophy, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best know ...
(1571–1630), particularly with
Kepler's laws. The history of the descriptive and theoretical aspects of the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
mostly spans from the late
sixteenth century to the end of the nineteenth century.
Theoretical astronomy is built on the work of
observational astronomy,
astrometry
Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other Astronomical object, celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, th ...
,
astrochemistry
Astrochemistry is the study of the abundance and reactions of molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar Syst ...
, and
astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the ...
. Astronomy was early to adopt computational techniques to model stellar and galactic formation and celestial mechanics. From the point of view of theoretical astronomy, not only must the mathematical expression be reasonably accurate but it should preferably exist in a form which is amenable to further mathematical analysis when used in specific problems. Most of theoretical astronomy uses
Newtonian theory of gravitation, considering that the effects of
general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
are weak for most celestial objects. Theoretical astronomy does not attempt to predict the position, size and temperature of every object in the
universe
The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
, but by and large has concentrated upon analyzing the apparently complex but periodic motions of celestial objects.
Integrating astronomy and physics
"Contrary to the belief generally held by laboratory physicists, astronomy has contributed to the growth of our understanding of physics."
Physics has helped in the elucidation of astronomical phenomena, and astronomy has helped in the elucidation of physical phenomena:
# discovery of the law of gravitation came from the information provided by the motion of the
Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
and the planets,
# viability of nuclear fusion as demonstrated in the
Sun and stars and yet to be reproduced on earth in a controlled form.
[
Integrating astronomy with physics involves:
The aim of astronomy is to understand the physics and chemistry from the laboratory that is behind cosmic events so as to enrich our understanding of the cosmos and of these sciences as well.][
]
Integrating astronomy and chemistry
Astrochemistry, the overlap of the disciplines of astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
and chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, is the study of the abundance and reactions of chemical elements
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in i ...
and molecules in space, and their interaction with radiation. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds, is of special interest because it is from these clouds that solar systems form.
Infrared astronomy, for example, has revealed that the interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
contains a suite of complex gas-phase carbon compounds called aromatic hydrocarbons, often abbreviated ( PAHs or PACs). These molecules composed primarily of fused rings of carbon (either neutral or in an ionized state) are said to be the most common class of carbon compound in the galaxy. They are also the most common class of carbon molecule in meteorite
A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s and in cometary and asteroidal dust (cosmic dust
Cosmic dustalso called extraterrestrial dust, space dust, or star dustis dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and , such as micrometeoroids (30 μm). Cosmic dust can ...
). These compounds, as well as the amino acids, nucleobases, and many other compounds in meteorites, carry deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
(2H) and isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s of carbon, nitrogen, and oxygen that are very rare on earth, attesting to their extraterrestrial origin. The PAHs are thought to form in hot circumstellar environments (around dying carbon rich red giant stars).
The sparseness of interstellar and interplanetary space results in some unusual chemistry, since symmetry-forbidden reactions cannot occur except on the longest of timescales. For this reason, molecules and molecular ions which are unstable on earth can be highly abundant in space, for example the H3+ ion. Astrochemistry overlaps with astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the ...
and nuclear physics
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.
Nuclear physics should not be confused with atomic physics, which studies th ...
in characterizing the nuclear reactions which occur in stars, the consequences for stellar evolution
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is consi ...
, as well as stellar 'generations'. Indeed, the nuclear reactions in stars produce every naturally occurring chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
. As the stellar 'generations' advance, the mass of the newly formed elements increases. A first-generation star uses elemental hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
(H) as a fuel source and produces helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
(He). Hydrogen is the most abundant element, and it is the basic building block for all other elements as its nucleus has only one proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
. Gravitational pull toward the center of a star creates massive amounts of heat and pressure, which cause nuclear fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
. Through this process of merging nuclear mass, heavier elements are formed. Lithium
Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
, carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
, nitrogen
Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
and oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
are examples of elements that form in stellar fusion. After many stellar generations, very heavy elements are formed (e.g. iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
and lead
Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
).
Tools of theoretical astronomy
Theoretical astronomers use a wide variety of tools which include analytical models (for example, polytropes to approximate the behaviors of a star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
) and computation
A computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computation are mathematical equation solving and the execution of computer algorithms.
Mechanical or electronic devices (or, hist ...
al numerical simulations. Each has some advantages. Analytical models of a process are generally better for giving insight into the heart of what is going on. Numerical models can reveal the existence of phenomena and effects that would otherwise not be seen.
Astronomy theorists endeavor to create theoretical models and figure out the observational consequences of those models. This helps observers look for data that can refute a model or help in choosing between several alternate or conflicting models.
Theorists also try to generate or modify models to take into account new data. Consistent with the general scientific approach, in the case of an inconsistency, the general tendency is to try to make minimal modifications to the model to fit the data. In some cases, a large amount of inconsistent data over time may lead to total abandonment of a model.
Topics of theoretical astronomy
Topics studied by theoretical astronomers include:
# stellar dynamics and evolution
Evolution is the change in the heritable Phenotypic trait, characteristics of biological populations over successive generations. It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, re ...
;
# galaxy formation;
# large-scale structure of matter
In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
in the Universe
The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
;
# origin of cosmic ray
Cosmic rays or astroparticles are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the ...
s;
# general relativity
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
and physical cosmology
Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fu ...
, including string cosmology and astroparticle physics.
Astrophysical relativity serves as a tool to gauge the properties of large scale structures for which gravitation plays a significant role in physical phenomena investigated and as the basis for black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and the study of gravitational waves.
Astronomical models
Some widely accepted and studied theories and models in astronomy, now included in the Lambda-CDM model
The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:
# a cosmological constant, denoted by lambda (Λ), associated with dark energy;
# the postulated cold dark mat ...
are the Big Bang
The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models based on the Big Bang concept explain a broad range of phenomena, including th ...
, Cosmic inflation, dark matter
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
, and fundamental theories of physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
.
A few examples of this process:
Leading topics in theoretical astronomy
Dark matter
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity, gravitational effects that cannot be explained by general relat ...
and dark energy
In physical cosmology and astronomy, dark energy is a proposed form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. It also slows the rate of structure format ...
are the current leading topics in astronomy,[http://imagine.gsfc.nasa.gov/docs/science/know_l1/dark_matter.html third paragraph, "There is currently much ongoing research by scientists attempting to discover exactly what this dark matter is". Retrieved 2009-11-02] as their discovery and controversy originated during the study of the galaxies.
Theoretical astrophysics
Of the topics approached with the tools of theoretical physics, particular consideration is often given to stellar photospheres, stellar atmospheres, the solar atmosphere, planetary atmospheres, gaseous nebulae, nonstationary stars, and the interstellar medium. Special attention is given to the internal structure of stars.
Weak equivalence principle
The observation of a neutrino burst within 3 h of the associated optical burst from Supernova 1987A in the Large Magellanic Cloud (LMC) gave theoretical astrophysicists an opportunity to test that neutrinos and photons follow the same trajectories in the gravitational field of the galaxy.
Thermodynamics for stationary black holes
A general form of the first law of thermodynamics for stationary black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
s can be derived from the microcanonical functional integral for the gravitational field. The boundary data
# the gravitational field as described with a microcanonical system in a spatially finite region and
# the density of states expressed formally as a functional integral over Lorentzian metrics and as a functional of the geometrical boundary data that are fixed in the corresponding action,
are the thermodynamical extensive variables, including the energy and angular momentum of the system.[ For the simpler case of nonrelativistic mechanics as is often observed in astrophysical phenomena associated with a black hole event horizon, the density of states can be expressed as a real-time functional integral and subsequently used to deduce Feynman's imaginary-time functional integral for the canonical partition function.][
]
Theoretical astrochemistry
Reaction equations and large reaction networks are an important tool in theoretical astrochemistry, especially as applied to the gas-grain chemistry of the interstellar medium. Theoretical astrochemistry offers the prospect of being able to place constraints on the inventory of organics for exogenous delivery to the early Earth.
Interstellar organics
"An important goal for theoretical astrochemistry is to elucidate which organics are of true interstellar origin, and to identify possible interstellar precursors and reaction pathways for those molecules which are the result of aqueous alterations." One of the ways this goal can be achieved is through the study of carbonaceous material as found in some meteorites. Carbonaceous chondrites (such as C1 and C2) include organic compounds such as amines and amides; alcohols, aldehydes, and ketones; aliphatic and aromatic hydrocarbons; sulfonic and phosphonic acids; amino, hydroxycarboxylic, and carboxylic acids; purines and pyrimidines; and kerogen-type material.[ The organic inventories of primitive meteorites display large and variable enrichments in deuterium, carbon-13 (13C), and nitrogen-15 (15N), which is indicative of their retention of an interstellar heritage.][
]
Chemistry in cometary comae
The chemical composition of comets should reflect both the conditions in the outer solar nebula some 4.5 billion years ago, and the nature of the natal interstellar cloud from which the Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
was formed. While comets retain a strong signature of their ultimate interstellar origins, significant processing must have occurred in the protosolar nebula.[ Early models of coma chemistry showed that reactions can occur rapidly in the inner coma, where the most important reactions are proton transfer reactions.][ Such reactions can potentially cycle deuterium between the different coma molecules, altering the initial D/H ratios released from the nuclear ice, and necessitating the construction of accurate models of cometary deuterium chemistry, so that gas-phase coma observations can be safely extrapolated to give nuclear D/H ratios.][
]
Theoretical chemical astronomy
While the lines of conceptual understanding between theoretical astrochemistry and theoretical chemical astronomy often become blurred so that the goals and tools are the same, there are subtle differences between the two sciences. Theoretical chemistry as applied to astronomy seeks to find new ways to observe chemicals in celestial objects, for example. This often leads to theoretical astrochemistry having to seek new ways to describe or explain those same observations.
Astronomical spectroscopy
The new era of chemical astronomy had to await the clear enunciation of the chemical principles of spectroscopy and the applicable theory.
Chemistry of dust condensation
Supernova radioactivity dominates light curves and the chemistry of dust condensation is also dominated by radioactivity. Dust is usually either carbon or oxides depending on which is more abundant, but Compton electrons dissociate the CO molecule in about one month.[ The new chemical astronomy of supernova solids depends on the supernova radioactivity:
# the radiogenesis of 44Ca from 44Ti decay after carbon condensation establishes their supernova source,
# their opacity suffices to shift emission lines blueward after 500 d and emits significant infrared luminosity,
# parallel kinetic rates determine trace isotopes in meteoritic supernova graphites,
# the chemistry is kinetic rather than due to thermal equilibrium and
# is made possible by radiodeactivation of the CO trap for carbon.][
]
Theoretical physical astronomy
Like theoretical chemical astronomy, the lines of conceptual understanding between theoretical astrophysics and theoretical physical astronomy are often blurred, but, again, there are subtle differences between these two sciences. Theoretical physics as applied to astronomy seeks to find new ways to observe physical phenomena in celestial objects and what to look for, for example. This often leads to theoretical astrophysics having to seek new ways to describe or explain those same observations, with hopefully a convergence to improve our understanding of the local environment of Earth and the physical Universe
The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
.
Weak interaction and nuclear double beta decay
Nuclear matrix elements of relevant operators as extracted from data and from a shell-model and theoretical approximations both for the two-neutrino and neutrinoless modes of decay are used to explain the weak interaction and nuclear structure aspects of nuclear double beta decay.
Neutron-rich isotopes
New neutron-rich isotopes, 34Ne, 37Na, and 43Si have been produced unambiguously for the first time, and convincing evidence for the particle instability of three others, 33Ne, 36Na, and 39Mg has been obtained. These experimental findings compare with recent theoretical predictions.[
]
Theory of astronomical time keeping
Until recently all the time units that appear natural to us are caused by astronomical phenomena:
# Earth's orbit around the Sun => the year, and the seasons,
# Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
's orbit around the Earth => the month,
# Earth's rotation and the succession of brightness and darkness => the day (and night).
High precision appears problematic:
# ambiguities arise in the exact definition of a rotation or revolution,
# some astronomical processes are uneven and irregular, such as the noncommensurability of year, month, and day,
# there are a multitude of time scales and calendars to solve the first two problems.
Some of these time standard
A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of cu ...
scales are sidereal time
Sidereal time ("sidereal" pronounced ) is a system of timekeeping used especially by astronomers. Using sidereal time and the celestial coordinate system, it is easy to locate the positions of celestial objects in the night sky. Sidereal t ...
, solar time
Solar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Traditionally, there are three types of time reckoning based ...
, and universal time.
Atomic time
From the Systeme Internationale (SI) comes the second as defined by the duration of 9 192 631 770 cycles of a particular hyperfine structure transition in the ground state of caesium-133 (133Cs).[ For practical usability a device is required that attempts to produce the SI second (s) such as an ]atomic clock
An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwee ...
. But not all such clocks agree. The weighted mean of many clocks distributed over the whole Earth defines the Temps Atomique International; i.e., the Atomic Time TAI.[ From the General theory of relativity the time measured depends on the altitude on earth and the spatial velocity of the clock so that TAI refers to a location on sea level that rotates with the Earth.][
]
Ephemeris time
Since the Earth's rotation is irregular, any time scale derived from it such as Greenwich Mean Time
Greenwich Mean Time (GMT) is the local mean time at the Royal Observatory, Greenwich, Royal Observatory in Greenwich, London, counted from midnight. At different times in the past, it has been calculated in different ways, including being ...
led to recurring problems in predicting the Ephemerides for the positions of the Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
, Sun, planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s and their natural satellite
A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a deriv ...
s.[ In 1976 the ]International Astronomical Union
The International Astronomical Union (IAU; , UAI) is an international non-governmental organization (INGO) with the objective of advancing astronomy in all aspects, including promoting astronomical research, outreach, education, and developmen ...
(IAU) resolved that the theoretical basis for ephemeris time (ET) was wholly non-relativistic, and therefore, beginning in 1984 ephemeris time would be replaced by two further time scales with allowance for relativistic corrections. Their names, assigned in 1979, emphasized their dynamical nature or origin, Barycentric Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT). Both were defined for continuity with ET and were based on what had become the standard SI second, which in turn had been derived from the measured second of ET.
During the period 1991–2006, the TDB and TDT time scales were both redefined and replaced, owing to difficulties or inconsistencies in their original definitions. The current fundamental relativistic time scales are Geocentric Coordinate Time (TCG) and Barycentric Coordinate Time (TCB). Both of these have rates that are based on the SI second in respective reference frames (and hypothetically outside the relevant gravity well), but due to relativistic effects, their rates would appear slightly faster when observed at the Earth's surface, and therefore diverge from local Earth-based time scales using the SI second at the Earth's surface.
The currently defined IAU time scales also include Terrestrial Time
Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth.
For example, the Astronomical Almanac uses ...
(TT) (replacing TDT, and now defined as a re-scaling of TCG, chosen to give TT a rate that matches the SI second when observed at the Earth's surface), and a redefined Barycentric Dynamical Time (TDB), a re-scaling of TCB to give TDB a rate that matches the SI second at the Earth's surface.
Extraterrestrial time-keeping
Stellar dynamical time scale
For a star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
, the dynamical time scale is defined as the time that would be taken for a test particle released at the surface to fall under the star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
's potential to the centre point, if pressure forces were negligible. In other words, the dynamical time scale measures the amount of time it would take a certain star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
to collapse in the absence of any internal pressure
Internal pressure is a measure of how the internal energy of a system changes when it expands or contracts at constant temperature. It has the same dimensions as pressure, the SI unit of which is the pascal.
Internal pressure is usually given the ...
. By appropriate manipulation of the equations of stellar structure this can be found to be
where R is the radius
In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
of the star, G is the gravitational constant, M is the mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
of the star, ρ the star gas density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
(assumed constant here) and v is the escape velocity
In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming:
* Ballistic trajectory – no other forces are acting on the object, such as ...
. As an example, the Sun dynamical time scale is approximately 1133 seconds. Note that the actual time it would take a star like the Sun to collapse is greater because internal pressure is present.
The 'fundamental' oscillatory mode of a star will be at approximately the dynamical time scale. Oscillations at this frequency are seen in Cepheid variables.
Theory of astronomical navigation
On Earth
The basic characteristics of applied astronomical navigation are
# usable in all areas of sailing around the Earth,
# applicable autonomously (does not depend on others – persons or states) and passively (does not emit energy),
# conditional usage via optical visibility (of horizon and celestial bodies), or state of cloudiness,
# precisional measurement, sextant is 0.1', altitude and position is between 1.5' and 3.0'.
# temporal determination takes a couple of minutes (using the most modern equipment) and ≤ 30 min (using classical equipment).[
The superiority of satellite navigation systems to astronomical navigation are currently undeniable, especially with the development and use of GPS/NAVSTAR.] This global satellite system
# enables automated three-dimensional positioning at any moment,
# automatically determines position continuously (every second or even more often),
# determines position independent of weather conditions (visibility and cloudiness),
# determines position in real time to a few meters (two carrying frequencies) and 100 m (modest commercial receivers), which is two to three orders of magnitude better than by astronomical observation,
# is simple even without expert knowledge,
# is relatively cheap, comparable to equipment for astronomical navigation, and
# allows incorporation into integrated and automated systems of control and ship steering.[ The use of astronomical or celestial navigation is disappearing from the surface and beneath or above the surface of the Earth.
Geodetic astronomy is the application of ]astronomical
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest include ...
methods into networks and technical projects of geodesy
Geodesy or geodetics is the science of measuring and representing the Figure of the Earth, geometry, Gravity of Earth, gravity, and Earth's rotation, spatial orientation of the Earth in Relative change, temporally varying Three-dimensional spac ...
for
* apparent places of stars, and their proper motion
Proper motion is the astrometric measure of changes in the apparent places of stars or other celestial objects as they move relative to the center of mass of the Solar System. It is measured relative to the distant stars or a stable referenc ...
s
* precise astronomical navigation
Navigation is a field of study that focuses on the process of monitoring and controlling the motion, movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navig ...
* astro-geodetic geoid determination and
* modelling the rock densities of the topography and of geological
Geology (). is a branch of natural science concerned with the Earth and other astronomical objects, the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth s ...
layers in the subsurface
* Satellite geodesy using the stellar background (see also astrometry
Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other Astronomical object, celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, th ...
and cosmic triangulation)
* Monitoring of the Earth rotation and polar wandering
* Contribution to the time system of physics and geosciences
Astronomical algorithms are the algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
s used to calculate ephemerides, calendar
A calendar is a system of organizing days. This is done by giving names to periods of time, typically days, weeks, months and years. A calendar date, date is the designation of a single and specific day within such a system. A calendar is ...
s, and positions (as in celestial navigation or satellite navigation
A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). , four global systems are ope ...
).
Many astronomical and navigational computations use the Figure of the Earth
In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is ...
as a surface representing the Earth.
The International Earth Rotation and Reference Systems Service
The International Earth Rotation and Reference Systems Service (IERS), formerly the International Earth Rotation Service, is the body responsible for maintaining global time and reference frame standards, notably through its Earth Orientation P ...
(IERS), formerly the International Earth Rotation Service, is the body responsible for maintaining global time and reference frame standards, notably through its Earth Orientation Parameter (EOP) and International Celestial Reference System (ICRS) groups.
Deep space
The Deep Space Network, or DSN, is an international network of large antennas and communication facilities that supports interplanetary spacecraft
A spacecraft is a vehicle that is designed spaceflight, to fly and operate in outer space. Spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth observation, Weather s ...
missions, and radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
and radar astronomy observations for the exploration of the Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
and the universe
The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from s ...
. The network also supports selected Earth-orbiting missions. DSN is part of the NASA
The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
Jet Propulsion Laboratory
The Jet Propulsion Laboratory (JPL) is a Federally funded research and development centers, federally funded research and development center (FFRDC) in La Cañada Flintridge, California, Crescenta Valley, United States. Founded in 1936 by Cali ...
(JPL).
Aboard an exploratory vehicle
An observer becomes a deep space explorer upon escaping Earth's orbit. While the Deep Space Network
The NASA Deep Space Network (DSN) is a worldwide Telecommunications network, network of spacecraft communication ground segment facilities, located in the United States (California), Spain (Madrid), and Australia (Canberra), that supports NASA' ...
maintains communication and enables data download from an exploratory vessel, any local probing performed by sensors or active systems aboard usually require astronomical navigation, since the enclosing network of satellites to ensure accurate positioning is absent.
See also
* Astrochemistry
Astrochemistry is the study of the abundance and reactions of molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar Syst ...
* Astrometry
Astrometry is a branch of astronomy that involves precise measurements of the positions and movements of stars and other Astronomical object, celestial bodies. It provides the kinematics and physical origin of the Solar System and this galaxy, th ...
* Astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the ...
* Celestial mechanics
Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to ...
* Celestial navigation
* Celestial sphere
In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, ...
* Orbital mechanics
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal ...
References
External links
Introduction to Cataclysmic Variables (CVs)
L. Sidoli, 2008 ''Transient outburst mechanisms''
Commentary on "The Compendium of Plain Astronomy"
is a manuscript from 1665 about theoretical astronomy
{{Astronomy subfields
Applied and interdisciplinary physics
Astrometry
Astronomical imaging
Astronomical sub-disciplines
Astronomical coordinate systems
Observational astronomy
Space science
Stellar astronomy