The mass-to-charge ratio (''m''/''Q'') is a
physical quantity
A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For examp ...
relating the ''
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
'' (quantity of matter) and the ''
electric charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
'' of a given particle, expressed in
units
Unit may refer to:
Arts and entertainment
* UNIT, a fictional military organization in the science fiction television series ''Doctor Who''
* Unit of action, a discrete piece of action (or beat) in a theatrical presentation
Music
* Unit (album), ...
of
kilograms
The kilogram (also kilogramme) is the unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially ...
per
coulomb
The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI).
In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
(kg/C). It is most widely used in the
electrodynamics
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
of
charged particles
In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, ...
, e.g. in electron optics and
ion optics An electrostatic lens is a device that assists in the transport of charged particles. For instance, it can guide electrons emitted from a sample to an electron analyzer, analogous to the way an optical lens assists in the transport of light in an op ...
.
It appears in the scientific fields of
electron microscopy
An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
,
cathode ray tube
A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms ( oscilloscope), pictu ...
s,
accelerator physics
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams ...
,
nuclear physics
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.
Nuclear physics should not be confused with atomic physics, which studies the ...
,
Auger electron spectroscopy
file:HD.6C.037 (11856519893).jpg, A Hanford Site, Hanford scientist uses an Auger electron spectrometer to determine the elemental composition of surfaces.
Auger electron spectroscopy (AES; pronounced in French) is a common analytical technique us ...
,
cosmology
Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount (lexicographer), Thomas Blount's ''Glossographia'', and in 1731 taken up in ...
and
mass spectrometry
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
.
The importance of the mass-to-charge ratio, according to classical electrodynamics, is that two particles with the same mass-to-charge ratio move in the same path in a vacuum, when subjected to the same electric and magnetic fields. On rare occasions, the
thomson Thomson may refer to:
Names
* Thomson (surname), a list of people with this name and a description of its origin
* Thomson baronets, four baronetcies created for persons with the surname Thomson
Businesses and organizations
* SGS-Thomson Mic ...
has been used as its unit in the field of mass spectrometry.
Some disciplines use the charge-to-mass ratio (''Q''/''m'') instead, which is the
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a rat ...
of the mass-to-charge ratio. The
CODATA recommended value for an
electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
is
Origin
When charged particles move in electric and magnetic fields the following two laws apply:
*
Lorentz force
In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
law:
*
Newton's second law
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:
# A body remains at rest, or in motion ...
of motion:
where F is the
force
In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
applied to the ion, ''m'' is the
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
of the particle, a is the
acceleration
In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
, ''Q'' is the
electric charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
, E is the
electric field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
, and v × B is the
cross product
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is ...
of the ion's
velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
and the
magnetic flux density
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
.
This differential equation is the classic equation of motion for charged particles. Together with the particle's initial conditions, it completely determines the particle's motion in space and time in terms of ''m''/''Q''. Thus
mass spectrometers
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used ...
could be thought of as "mass-to-charge spectrometers". When presenting data in a
mass spectrum
A mass spectrum is a histogram plot of intensity vs. ''mass-to-charge ratio'' (''m/z'') in a chemical sample, usually acquired using an instrument called a ''mass spectrometer''. Not all mass spectra of a given substance are the same; for example ...
, it is common to use the dimensionless ''m''/''z'', which denotes the dimensionless quantity formed by dividing the mass number of the ion by its charge number.
Combining the two previous equations yields:
This differential equation is the classic equation of motion of a charged particle in vacuum. Together with the particle's initial conditions it determines the particle's motion in space and time. It immediately reveals that two particles with the same ''m''/''Q'' ratio behave in the same way. This is why the mass-to-charge ratio is an important physical quantity in those scientific fields where charged particles interact with magnetic or electric fields.
Exceptions
There are non-classical effects that derive from
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, such as the
Stern–Gerlach effect that can diverge the path of ions of identical ''m''/''Q''.
Symbols and units
The IUPAC recommended symbol for mass and charge are ''m'' and ''Q'', respectively, however using a lowercase ''q'' for charge is also very common. Charge is a scalar property, meaning that it can be either
positive
Positive is a property of positivity and may refer to:
Mathematics and science
* Positive formula, a logical formula not containing negation
* Positive number, a number that is greater than 0
* Plus sign, the sign "+" used to indicate a posi ...
(+) or
negative (−). The
Coulomb
The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI).
In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
(C) is the SI unit of charge; however, other units can be used, such as expressing charge in terms of the
elementary charge
The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundame ...
(''e''). The
SI unit
The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. E ...
of the physical quantity ''m''/''Q'' is kilogram per coulomb.
Mass spectrometry and ''m''/''z''
The units and notation above are used when dealing with the physics of mass spectrometry; however, the ''m''/''z'' notation is used for the independent variable in a
mass spectrum
A mass spectrum is a histogram plot of intensity vs. ''mass-to-charge ratio'' (''m/z'') in a chemical sample, usually acquired using an instrument called a ''mass spectrometer''. Not all mass spectra of a given substance are the same; for example ...
.
This notation eases data interpretation since it is numerically more related to the
unified atomic mass unit
The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass widely used in physics and chemistry. It is defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at ...
.
For example, if an ion carries one charge the ''m''/''z'' is numerically equivalent to the molecular or atomic mass of the ion in unified atomic mass units (u), where the numerical value of ''m''/''Q'' is abstruse. The ''m'' refers to the molecular or atomic mass number and ''z'' to the
charge number
Charge number (''z'') refers to a quantized value of electric charge, with the quantum of electric charge being the elementary charge, so that the charge number equals the electric charge (''q'') in coulombs divided by the elementary-charge con ...
of the
ion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
; however, the quantity of ''m''/''z'' is dimensionless by definition.
An ion with a mass of 100 u (unified atomic mass units) () carrying two charges () will be observed at . However, the empirical observation is one equation with two unknowns and could have arisen from other ions, such as an ion of mass 50 u carrying one charge. Thus, the ''m''/''z'' of an ion alone neither infers mass nor the number of charges. Additional information, such as the mass spacing between mass isotopomers or the relationship between multiple charge states, is required to assign the charge state and infer the mass of the ion from the ''m''/''z''. This additional information is often but not always available. Thus, the ''m''/''z'' is primarily used to report an empirical observation in mass spectrometry. This observation may be used in conjunction with other lines of evidence to subsequently infer the physical attributes of the ion, such as mass and charge.
History
In the 19th century, the mass-to-charge ratios of some ions were measured by electrochemical methods. In 1897, the mass-to-charge ratio of the
electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
was first measured by
J. J. Thomson
Sir Joseph John Thomson (18 December 1856 – 30 August 1940) was a British physicist and Nobel Laureate in Physics, credited with the discovery of the electron, the first subatomic particle to be discovered.
In 1897, Thomson showed that ...
. By doing this, he showed that the electron was in fact a particle with a mass and a charge, and that its mass-to-charge ratio was much smaller than that of the hydrogen ion H
+. In 1898,
Wilhelm Wien
Wilhelm Carl Werner Otto Fritz Franz Wien (; 13 January 1864 – 30 August 1928) was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody ...
separated ions (
canal ray
An anode ray (also positive ray or canal ray) is a beam of positive ions that is created by certain types of gas-discharge tubes. They were first observed in Crookes tubes during experiments by the German scientist Eugen Goldstein, in 1886. La ...
s) according to their mass-to-charge ratio with an ion optical device with superimposed electric and magnetic fields (
Wien filter
A Wien filter also known as velocity selector is a device consisting of perpendicular electric and magnetic fields that can be used as a velocity filter for charged particles, for example in electron microscopes and spectrometers. It is used in ...
). In 1901
Walter Kaufman measured the increase of
electromagnetic mass Electromagnetic mass was initially a concept of classical mechanics, denoting as to how much the electromagnetic field, or the self-energy, is contributing to the mass of charged particles. It was first derived by J. J. Thomson in 1881 and was for ...
of fast electrons (
Kaufmann–Bucherer–Neumann experiments
The Kaufmann–Bucherer–Neumann experiments measured the dependence of the inertial mass (or momentum) of an object on its velocity. The historical importance of this series of experiments performed by various physicists between 1901 and 1915 is ...
), or
relativistic mass
The word "mass" has two meanings in special relativity: '' invariant mass'' (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity o ...
increase in modern terms. In 1913, Thomson measured the mass-to-charge ratio of
ion
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s with an instrument he called a parabola spectrograph. Today, an instrument that measures the mass-to-charge ratio of charged particles is called a
mass spectrometer
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
.
Charge-to-mass ratio
The charge-to-mass ratio (''Q''/''m'') of an object is, as its name implies, the
charge
Charge or charged may refer to:
Arts, entertainment, and media Films
* '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary
Music
* ''Charge'' (David Ford album)
* ''Charge'' (Machel Montano album)
* ''Charge!!'', an album by The Aqu ...
of an object divided by the mass of the same object. This quantity is generally useful only for objects that may be treated as particles. For extended objects, total charge, charge density, total mass, and mass density are often more useful.
Derivation:
or
Since
,
or
Equations () and () yield
Significance
In some experiments, the charge-to-mass ratio is the only quantity that can be measured directly. Often, the charge can be inferred from theoretical considerations, so that the charge-to-mass ratio provides a way to calculate the mass of a particle.
Often, the charge-to-mass ratio can be determined from observing the deflection of a charged particle in an external
magnetic
Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
field. The
cyclotron
A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Janu ...
equation, combined with other information such as the
kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
of the particle, will give the charge-to-mass ratio. One application of this principle is the mass spectrometer. The same principle can be used to extract information in experiments involving the
cloud chamber
A cloud chamber, also known as a Wilson cloud chamber, is a particle detector used for visualizing the passage of ionizing radiation.
A cloud chamber consists of a sealed environment containing a supersaturated vapour of water or alcohol. ...
.
The ratio of electrostatic to gravitational forces between two particles will be proportional to the product of their charge-to-mass ratios. It turns out that gravitational forces are negligible on the subatomic level, due to the extremely small masses of subatomic particles.
Electron
The electron charge-to-mass quotient,
, is a quantity that may be measured in experimental physics. It bears significance because the electron mass ''m''
e is difficult to measure directly, and is instead derived from measurements of the elementary charge ''e'' and
. It also has historical significance; the ''Q''/''m'' ratio of the electron was successfully calculated by
J. J. Thomson
Sir Joseph John Thomson (18 December 1856 – 30 August 1940) was a British physicist and Nobel Laureate in Physics, credited with the discovery of the electron, the first subatomic particle to be discovered.
In 1897, Thomson showed that ...
in 1897—and more successfully by Dunnington, which involves the
angular momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
and deflection due to a perpendicular
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. Thomson's measurement convinced him that
cathode ray
Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to ele ...
s were particles, which were later identified as
electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
s, and he is generally credited with their discovery.
The
CODATA recommended value is CODATA refers to this as the electron charge-to-mass quotient, but ratio is still commonly used.
There are two other common ways of measuring the charge-to-mass ratio of an electron, apart from Thomson and Dunnington's methods.
#The magnetron method: Using a GRD7 Valve (Ferranti valve), electrons are expelled from a hot tungsten-wire filament towards an anode. The electron is then deflected using a solenoid. From the current in the solenoid and the current in the Ferranti Valve, e/m can be calculated.
#Fine beam tube method: A heater heats a cathode, which emits electrons. The electrons are accelerated through a known potential, so the velocity of the electrons is known. The beam path can be seen when the electrons are accelerated through a helium (He) gas. The collisions between the electrons and the helium gas produce a visible trail. A pair of
Helmholtz coil
A Helmholtz coil is a device for producing a region of nearly uniform magnetic field, named after the German physicist Hermann von Helmholtz. It consists of two electromagnets on the same axis, carrying an equal electric current in the same direc ...
s produces a uniform and measurable magnetic field at right angles to the electron beam. This magnetic field deflects the electron beam in a circular path. By measuring the accelerating potential (volts), the current (amps) to the Helmholtz coils, and the radius of the electron beam, e/m can be calculated.
[PASCO scientific, Instruction Manual and Experimental guide for the PASCO scientific Model SE-9638, pg. 1.]
Zeeman Effect
The charge-to-mass ratio of an electron may also be measured with the
Zeeman effect
The Zeeman effect (; ) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize ...
, which gives rise to energy splittings in the presence of a
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
''B'':
Here ''m''
''j'' are quantum integer values ranging from −''j'' to ''j'', with ''j'' as the
eigenvalue
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
of the
total angular momentum
In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin).
If s is the particle's s ...
operator J, with
:
where S is the
spin operator
Spin is a conserved quantity carried by elementary particles, and thus by composite particles (hadrons) and atomic nuclei.
Spin is one of two types of angular momentum in quantum mechanics, the other being ''orbital angular momentum''. The orbita ...
with eigenvalue ''s'' and L is the
angular momentum operator
In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum prob ...
with eigenvalue ''l''. ''g''
''J'' is the
Landé g-factor
In physics, the Landé ''g''-factor is a particular example of a ''g''-factor, namely for an electron with both spin and orbital angular momenta. It is named after Alfred Landé, who first described it in 1921.
In atomic physics, the Landé '' ...
, calculated as
The shift in energy is also given in terms of
frequency
Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
''υ'' and
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
''λ'' as
Measurements of the Zeeman effect commonly involve the use of a
Fabry–Pérot interferometer
In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces (i.e.: thin mirrors). Optical waves can pass through the optical cavity only when they are in resonance with it. It is ...
, with light from a source (placed in a magnetic field) being passed between two mirrors of the interferometer. If ''δD'' is the change in mirror separation required to bring the ''m''th-order ring of wavelength into coincidence with that of wavelength ''λ'', and Δ''D'' brings the ring of wavelength ''λ'' into coincidence with the ''m''th-order ring, then
It follows then that
Rearranging, it is possible to solve for the charge-to-mass ratio of an electron as
See also
*
Gyromagnetic ratio
In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol , gamma. Its SI u ...
*
Thomson (unit)
The thomson (symbol: Th) is a unit that has appeared infrequently in scientific literature relating to the field of mass spectrometry as a unit of mass-to-charge ratio. The unit was proposed by Cooks and Rockwood naming it in honour of J. J. Thom ...
References
Bibliography
*
*
* CC.
* IUPAP Red Book SUNAMCO 87-1 "Symbols, Units, Nomenclature and Fundamental Constants in Physics" (does not have an online version).
* Symbols Units and Nomenclature in Physics IUPAP-25 IUPAP-25, E.R. Cohen & P. Giacomo, Physics 146A (1987) 1–68.
External links
BIPM SI brochureAIP style manual* NIST o
an
* Physics Today'
instructions on quantities and units
{{DEFAULTSORT:Mass-To-Charge Ratio
Physical quantities
Mass spectrometry
Metrology
Ratios