Magnetorquers
   HOME

TheInfoList



OR:

A magnetorquer or magnetic torquer (also known as a torque rod) is a
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisotope ...
system for
attitude control Attitude control is the process of controlling the orientation of an aerospace vehicle with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc. Controlling vehicle ...
, detumbling, and stabilization built from
electromagnetic coil An electromagnetic coil is an electrical Electrical conductivity, conductor such as a wire in the shape of a wiktionary:coil, coil (spiral or helix). Electromagnetic coils are used in electrical engineering, in applications where electric curre ...
s. The magnetorquer creates a magnetic dipole that interfaces with an ambient magnetic field, usually Earth's, so that the counter-forces produced provide useful
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
.


Functional principle

Magnetorquers are essentially sets of electromagnets laid out to yield a rotationally asymmetric (
anisotropic Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
) magnetic field over an extended area. That field is controlled by switching
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
flow through the coils on or off, usually under computerized
feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
control Control may refer to: Basic meanings Economics and business * Control (management), an element of management * Control, an element of management accounting * Comptroller (or controller), a senior financial officer in an organization * Controllin ...
. The magnets themselves are mechanically anchored to the craft, so that any magnetic force they exert on the surrounding magnetic field will lead to a magnetic reverse force and result in mechanical torque about the vessel's
center of gravity In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weight function, weighted relative position (vector), position of the distributed mass sums to zero. Thi ...
. This makes it possible to freely pivot the craft around in a known local
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
of the magnetic field by only using electrical energy. The magnetic dipole generated by the ''magnetorquer'' is expressed by the formula : \mathbf = n I \mathbf, where ''n'' is the number of turns of the wire, ''I'' is the current provided, and A is the
vector area In 3-dimensional geometry and vector calculus, an area vector is a vector combining an area quantity with a direction, thus representing an ''oriented area'' in three dimensions. Every bounded surface in three dimensions can be associated with a ...
of the coil. The dipole interacts with the magnetic field generating a torque : \boldsymbol = \mathbf \times \mathbf, where m is the magnetic dipole vector, B the magnetic field vector (for a spacecraft it is the Earth magnetic field vector), and τ is the generated torque vector.


Construction

The construction of a ''magnetorquer'' is based on the realization of a coil with a defined area and number of turns according to the required performances. However, there are different ways to obtain the coil; thus, depending on the construction strategy, it is possible to find three types of magnetorquer, apparently very different from each other but based on the same concept: ; Air-core magnetorquer: This comprises the basic concept of ''magnetorquer'', a conductive wire wrapped around a non-conductive support anchored to the satellite. This kind of ''magnetorquer'' can provide a consistent magnetic dipole with an acceptable mass and encumbrance. ; Embedded coil: This is constructed creating a spiral trace inside the
PCBs Polychlorinated biphenyls (PCBs) are highly carcinogenic chemical compounds, formerly used in industrial and consumer products, whose production was banned in the United States by the Toxic Substances Control Act in 1979 and internationally by t ...
of solar panels which generates the effect of the coil. This solution is the one with the least impact on the satellite as it is entirely contained within the solar panels. However, due to the physical limit in the board thickness and the presence of other circuits and electronic components, it is not possible to reach a high value of the magnetic dipole. ; Torquerod: This is the most efficient solution. A conductive wire is wrapped around a ferromagnetic core which is magnetized when excited by the coil, thus generating a dipole considerably higher than the other solutions. However, the disadvantage is the presence of a residual magnetic dipole that remains even when the coil is turned off because of the
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
in the magnetization curve of the core. It is therefore necessary to demagnetize the core with a proper demagnetizing procedure. Normally, the presence of the core (generally consisting of heavy metal) increases the mass of the system. Typically three coils are used, although reduced configurations of two or even one magnet can suffice where full attitude control is not needed or external forces like asymmetric drag allow underactuated control. The three coil assembly usually takes the form of three perpendicular coils, because this setup equalizes the rotational symmetry of the fields which can be generated; no matter how the external field and the craft are placed with respect to each other, approximately the same torque can always be generated simply by using different amounts of current on the three different coils. As long as
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
is passing through the coils and the spacecraft has not yet been stabilized in a fixed orientation with respect to the external field, the craft's spinning will continue. Very small satellites may use
permanent magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
s instead of coils.


Advantages

Magnetorquers are lightweight, reliable, and energy-efficient. Unlike thrusters, they do not require expendable
propellant A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or other motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the e ...
, so they could in theory work indefinitely as long as sufficient
power Power most often refers to: * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power * Power (social and political), the ability to influence people or events ** Abusive power Power may a ...
is available to match the
resistive The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels ...
load of the coils. In Earth orbit, sunlight is one such practically inexhaustible energy source, using
solar panels A solar cell panel, solar electric panel, photo-voltaic (PV) module, PV panel or solar panel is an assembly of photovoltaic solar cells mounted in a (usually rectangular) frame, and a neatly organised collection of PV panels is called a phot ...
. Another advantage over
momentum wheel A reaction wheel (RW) is used primarily by spacecraft for three-axis attitude control, and does not require rockets or external applicators of torque. They provide a high pointing accuracy, and are particularly useful when the spacecraft must be ...
s and
control moment gyroscope A control moment gyroscope (CMG) is an attitude control device generally used in spacecraft attitude control systems. A CMG consists of a spinning rotor and one or more motorized gimbals that tilt the rotor’s angular momentum. As the rotor tilts ...
s is the absence of
moving parts Machines include both fixed and moving parts. The moving parts have controlled and constrained motions. Moving parts are machine components excluding any moving fluids, such as fuel, coolant or hydraulic fluid. Moving parts also do not include ...
, hence significantly higher reliability.


Disadvantages

The main disadvantage of magnetorquers is that very high magnetic flux densities are needed if large craft have to be turned quickly. This either necessitates a very high
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
in the coils, or much higher ambient flux densities than are available in
Earth orbit Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes  days (1 sidereal year), during which time Earth ...
. Consequently, the torques provided are very limited and only serve to accelerate or decelerate the change in a spacecraft's attitude by small amounts. Over time, active control can produce fast spinning even on Earth, but for accurate attitude control and stabilization the torques provided are often insufficient. To overcome this, magnetorquer are often combined with
reaction wheels A reaction wheel (RW) is used primarily by spacecraft for three-axis attitude control, and does not require rockets or external applicators of torque. They provide a high pointing accuracy, and are particularly useful when the spacecraft must be ...
. A broader disadvantage is the dependence on Earth's magnetic field strength, making this approach unsuitable for deep space missions, and also more suitable for
low Earth orbit A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never mor ...
s as opposed to higher ones such as
geosynchronous A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital ...
. The dependence on the highly variable intensity of Earth's magnetic field is problematic because then the attitude control problem becomes highly
nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
. It is also impossible to control attitude in all three axes even if the full three coils are used, because the torque can be generated only perpendicular to the Earth's magnetic field vector. Any spinning satellite made of a conductive material will lose rotational momentum in Earth's magnetic field due to generation of
eddy current Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a mag ...
s in its body and the corresponding braking force proportional to its spin rate.
Aerodynamic Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dyn ...
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of t ...
losses can also play a part. This means that the magnetorquer will have to be continuously operated, and at a power level which is enough to counter the resistive forces present. This is not always possible within the energy constraints of the vessel. The Michigan Exploration Laboratory (MXL) suspects that the M-Cubed
CubeSat A CubeSat is a class of miniaturized satellite based around a form factor consisting of cubes. CubeSats have a mass of no more than per unit, and often use commercial off-the-shelf (COTS) components for their electronics and structure. CubeSats ...
, a joint project run by MXL and
JPL The Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, United States. Founded in the 1930s by Caltech researchers, JPL is owned by NASA an ...
, became magnetically conjoined to
Explorer-1 Prime Explorer-1 rime'', also known as E1P and Electra, was a CubeSat-class picosatellite built by the Space Science and Engineering Laboratory (SSEL) at Montana State University. It was launched aboard a Taurus-XL rocket from Vandenberg Air Force Bas ...
, a second CubeSat released at the same time, via strong onboard magnets used for passive attitude control, after deploying on October 28, 2011. This is the first non-destructive latching of two satellites.


See also

*
Reaction wheel A reaction wheel (RW) is used primarily by spacecraft for three-axis attitude control, and does not require rockets or external applicators of torque. They provide a high pointing accuracy, and are particularly useful when the spacecraft must be ...


References

{{Reflist, 2 Spacecraft attitude control Spacecraft propulsion Spacecraft components