Evolution
The evolution of Mg2+ transport appears to have been rather complicated. Proteins apparently based on MgtE are present in bacteria and metazoa, but are missing in fungi and plants, whilst proteins apparently related to CorA are present in all of these groups. The two active transport transporters present in bacteria, MgtA and MgtB, do not appear to have any homologies in higher organisms. There are also Mg2+ transport systems that are found only in the higher organisms.Types
There are a large number of proteins yet to be identified that transport Mg2+. Even in the best studied eukaryote, yeast, Borrelly has reported a Mg2+/H+ exchanger without an associated protein, which is probably localised to the Golgi. At least one other major Mg2+ transporter in yeast is still unaccounted for, the one affecting Mg2+ transport in and out of the yeast vacuole. In higher, multicellular organisms, it seems that many Mg2+ transporting proteins await discovery. The CorA-domain-containing Mg2+ transporters (CorA, Alr-like and Mrs2-like) have a similar but not identical array of affinities for divalent cations. In fact, this observation can be extended to all of the Mg2+ transporters identified so far. This similarity suggests that the basic properties of Mg2+ strongly influence the possible mechanisms of recognition and transport. However, this observation also suggests that using other metal ions as tracers for Mg2+ uptake will not necessarily produce results comparable to the transporter's ability to transport Mg2+. Ideally, Mg2+ should be measured directly. Since 28Mg2+ is practically unobtainable, much of the old data will need to be reinterpreted with new tools for measuring Mg2+ transport, if different transporters are to be compared directly. The pioneering work of Kolisek and Froschauer using mag-fura 2 has shown that free Mg2+ can be reliably measured ''in vivo'' in some systems. By returning to the analysis of CorA with this new tool, we have gained an important baseline for the analysis of new Mg2+ transport systems as they are discovered. However, it is important that the amount of transporter present in the membrane is accurately determined if comparisons of transport capability are to be made. This bacterial system might also be able to provide some utility for the analysis of eukaryotic Mg2+ transport proteins, but differences in biological systems of prokaryotes and eukaryotes will have to be considered in any experiment.Function
Comparing the functions of the characterised Mg2+ transport proteins is currently almost impossible, even though the proteins have been investigated in different biological systems using different methodologies and technologies. Finding a system where all the proteins can be compared directly would be a major advance. If the proteins could be shown to be functional in bacteria (''S. typhimurium''), then a combination of the techniques of mag-fura 2, quantification of protein in the envelope membrane, and structure of the proteins (X-ray crystal or cryo-TEM) might allow the determination of the basic mechanisms involved in the recognition and transport of the Mg2+ ion. However, perhaps the best advance would be the development of methods allowing the measurement of the protein's function in the patch-clamp system using artificial membranes.Bacteria
Early research
In 1968, Lusk described the limitation of bacterial (''Escherichia coli'') growth on Mg2+-poor media, suggesting that bacteria required Mg2+ and were likely to actively take this ion from the environment. The following year, the same group and another group, Silver, independently described the uptake and efflux of Mg2+ in metabolically active ''E. coli'' cells using 28Mg2+. By the end of 1971, two papers had been published describing the interference of Co2+, Ni2+ and Mn2+ on the transport of Mg2+ in ''E. coli'' and in Aerobacter aerogenes and Bacillus megaterium. In the last major development before the cloning of the genes encoding the transporters, it was discovered that there was a second Mg2+ uptake system that showed similar affinity and transport kinetics to the first system, but had a different range of sensitivities to interfering cations. This system was also repressible by high extracellular concentrations of Mg2+ .CorA
The CorA gene and its corresponding protein are the most exhaustively studied Mg2+ transport system in any organism. Most of the published literature on the CorA gene comes from the laboratory of M. E. Maguire. Recently the group of R. J. Schweyen made a significant impact on the understanding of Mg2+ transport by CorA. The gene was originally named after the cobalt-resistant phenotype in ''E. coli'' that was caused by the gene's inactivation. The gene was genetically identified in ''E. coli'' by Park ''et al.'', but wasn't cloned until Hmiel ''et al.'' isolated the ''Salmonella enterica'' serovar Typhimurium (''S. typhimurium'') homologue. Later it would be shown by Smith and Maguire that the CorA gene was present in 17 gram-negative bacteria. With the large number of complete genome sequences now available for prokaryotes, CorA has been shown to be virtually ubiquitous among the Eubacteria, as well as being widely distributed among the Archaea. The CorA locus in ''E. coli'' contains a single open reading frame of 948 nucleotides, producing a protein of 316 amino acids. This protein is well conserved amongst the Eubacteria and Archaea. Between ''E. coli'' and ''S. typhimurium'', the proteins are 98% identical, but in more distantly related species, the similarity falls to between 15 and 20%. In the more distantly related genes, the similarity is often restricted to the C-terminal part of the protein, and a short amino acid motif GMN within this region is very highly conserved. The CorA domain, also known as PF01544 in the pFAM conserved protein domain database (http://webarchive.loc.gov/all/20110506030957/http%3A//pfam.sanger.ac.uk/), is additionally present in a wide range of higher organisms, and these transporters will be reviewed below. The CorA gene is constitutively expressed in ''S. typhimurium'' under a wide range of external Mg2+ concentrations. However, recent evidence suggests that the activity of the protein may be regulated by the PhoPQMgtA and MgtB
The presence of these two genes was first suspected when Nelson and Kennedy (1972) showed that there were Mg2+-repressible and non-repressible Mg2+ uptake systems in ''E. coli''. The non-repressible uptake of Mg2+ is mediated by the CorA protein. In ''S. typhimurium'' the repressible Mg2+ uptake was eventually shown to be via the MgtA and MgtB proteins. Both MgtA and MgtB are regulated by the PhoPQ system and are actively transcribed during the process of infection of human patients by ''S. typhimurium''. Although neither gene is required for pathogenicity, the MgtB protein does enhance the long-term survival of the pathogen in the cell. The genes are also upregulated ''in vitro'' when the Mg2+ concentration falls below 50 μM (Snavely ''et al.'', 1991a). Although the proteins have km values similar to CorA and transport rates approximately 10 times less, the genes may be part of a Mg2+ scavenging system. Chamnongpol and Groisman (2002) presents evidence that the role of these proteins may be to compensate for the inactivation of the CorA protein by the PhoPQ regulon. The authors suggest that the CorA protein is inactivated to allow the avoidance of metal toxicity via the protein in the low Mg2+ environments ''S. typhimurium'' is subjected to by cells after infection. The proteins are both P-type ATPases and neither gene shows any similarity to CorA. The MgtA and MgtB proteins are 75% similar (50% identical), although it seems that MgtB may have been acquired byMgtE
Two papers describe MgtE, a fourth Mg2+ uptake protein in bacteria unrelated to MgtA/B or CorA. This gene has been sequenced and the protein, 312 amino acids in size, is predicted to contain either four or five TM spanning domains that are closely arranged in the C-terminal part of the protein (see figure). This region of the protein has been identified in theYeast
Early research
The earliest research showing that yeast takes up Mg2+ appears to be done by Schmidt ''et al.'' (1949). However, these authors only showed altered yeast Mg2+ content in a table within the paper, and the report's conclusions dealt entirely with the metabolism of phosphate. A series of experiments by Rothstein shifted the focus more towards the uptake of the metal cations, showing that yeast take up cations with the following affinity series; Mg2+, Co2+, Zn2+ > Mn2+ > Ni2+ > Ca2+ > Sr2+. Additionally, it was suggested that the transport of the different cations is mediated by the same transport system — a situation very much like that in bacteria. In 1998, MacDiarmid and Gardner finally identified the proteins responsible for the observed cation transport phenotype in ''Saccharomyces cerevisiae''. The genes involved in this system and a second mitochondrial Mg2+ transport system, functionally identified significantly after the gene was cloned, are described in the sections below.ALR1 and ALR2
Two genes, ALR1 and ALR2, were isolated in a screen for Al3+ tolerance (resistance) in yeast. Over-expression constructs containing yeast genomic DNA were introduced into wild type yeast and the transformants were screened for growth on toxic levels of Al3+. ALR1 and ALR2 containing plasmids allowed the growth of yeast in these conditions. The Alr1p and Alr2p proteins consist of 859 and 858 amino acids respectively and are 70% identical. In a region in the C-terminal, half of these proteins are weakly similar to the full CorA protein. The computer-predicted TM topology of Alr1p is shown in the figure. The presence of a third TM domain was suggested by MacDiarmid and Gardner (1998), on the strength on sequence homology, and more recently by Lee and Gardner (2006), on the strength of mutagenesis studies, making the TM topology of these proteins more like that of CorA (see figure). Also, Alr1p contains the conserved GMN motif at the outside end of TM 2 (TM 2') and the mutation of the methionine (M) in this motif to a leucine (L) led to the loss of transport capability. The figure shows the two possible TM topologies of Alr1p. Part A of the figure shows the computer-predicted membrane topology of the Alr1p protein in yeast and part B shows the topology of Alr1p based on the experimental results of Lee and Gardner (2006). The GMN motif location is indicated in red and the TM domains in light blue. The orientation in the membrane and the positions of the N- and C-termini are indicated, the various sizes of the soluble domains are given in amino acids (AA), and TM domains are numbered by their similarity to CorA. Where any TM domain is missing, the remaining domains are numbered with primes. The figure is not drawn to scale. A third ALR-like gene is present in ''S. cerevisiae'' and there are two homologous genes in both ''Schizosaccharomyces pombe'' and ''Neurospora crassa''. These proteins contain a GMN motif like that of CorA, with the exception of the second ''N. crassa'' gene. No ALR-like genes have been identified in species outside of the fungi. Membrane fractionation and green fluorescent protein (GFP) fusion studies established that Alr1p is localised to the plasma membrane. The localisation of the Alr1p was observed to be internalised and degraded in the vacuole in response to extracellular cations. Mg2+, at very low extracellular concentrations (100 μM; < 10% of the standard media Mg2+ content), and Co2+ and Mn2+ at relatively high concentrations (> 20× standard media), induced the change in Alr1p protein localisation, and the effect was dependent on functional ubiquitination, endocytosis and vacuolar degradation. This mechanism was proposed to allow the regulation of Mg2+ uptake by yeast. However, a recent report indicates that several of the observations made by Stadler et al. were not reproducible. For example, regulation of ALR1 mRNA accumulation by Mg2+ supply was not observed, and the stability of the Alr1 protein was not reduced by exposure to excess Mg2+. The original observation of Mg-dependent accumulation of the Alr1 protein under steady-state low-Mg conditions was replicated, but this effect was shown to be an artifact caused by the addition of a small peptide (epitope) to the protein to allow its detection. Despite these problems, Alr1 activity was demonstrated to respond to Mg supply, suggesting that the activity of the protein is regulated directly, as was observed for some bacterial CorA proteins. A functional Alr1p (wild type) or Alr2p (overexpressed) is required for ''S. cerevisiae'' growth in standard conditions (4 mM Mg2+), and Alr1p can support normal growth at Mg2+ concentrations as low as 30 μM. 57Co2+ is taken up into yeast via the Alr1p protein with a km of 77 – 105 μM (; C. MacDiarmid and R. C. Gardner, unpublished data), but the Ki for Mg2+ inhibition of this transport is currently unknown. The transport of other cations by the Alr1p protein was assayed by the inhibition of yeast growth. The overexpression of Alr1p led to increased sensitivity to Ca2+, Co2+, Cu2+, La3+, Mn2+, Ni2+ and Zn2+, an array of cations similar to those shown to be transported into yeast by a CorA-like transport system. The increased toxicity of the cations in the presence of the transporter is assumed to be due to the increased accumulation of the cation inside the cell. The evidence that Alr1p is primarily a Mg2+ transporter is that the loss of Alr1p leads to a decreased total cell content of Mg2+, but not of other cations. Additionally, two electrophysiological studies where Alr1p was produced in yeast or ''Xenopus'' oocytes showed a Mg2+-dependent current in the presence of the protein; Salih ''et al.'', in prep. The kinetics of Mg2+ uptake by Alr1p have been investigated by electrophysiology techniques on whole yeast cells. The results suggested that Alr1p is very likely to act as an ion-selective channel. In the same paper, the authors reported that Mg2+ transport by Alr1p varied from 200 pA to 1500 pA, with a mean current of 264 pA. No quantification of the amount of protein producing the current was presented, so the results lack comparability with the bacterial Mg2+ transport proteins. The alternative techniques of 28Mg2+ radiotracer analysis and mag-fura 2 to measure Mg2+ uptake have not yet been used with Alr1p. 28Mg2+ is currently not available and the mag-fura 2 system is unlikely to provide simple uptake data in yeast. The yeast cell maintains a heterogeneous distribution of Mg2+ suggesting that multiple systems inside the yeast are transporting Mg2+ into storage compartments. This internal transport will very likely mask the uptake process. The expression of ALR1 in ''S. typhimurium'' without Mg2+ uptake genes may be an alternative, but, as stated earlier, the effects of a heterologous expression system would need to be taken into account.MNR2
The MNR2 gene encodes a protein closely related to the Alr proteins, but includes conserved features that define a distinct subgroup of CorA proteins in fungal genomes, suggesting a distinct role in Mg2+ homeostasis. Like an alr1 mutant, growth of an mnr2 mutant was sensitive to Mg2+-deficient conditions, but the mnr2 mutant was observed to accumulate more Mg2+ than a wild-type strain under these conditions. These phenotypes suggested that Mnr2 may regulate Mg2+ storage within an intracellular compartment. Consistent with this interpretation, the Mnr2 protein was localized to the membrane of the vacuole, an internal compartment implicated in the storage of excess mineral nutrients by yeast. A direct role of Mnr2 in Mg2+ transport was suggested by the observation that increased Mnr2 expression, which redirected some Mnr2 protein to the cell surface, also suppressed the Mg2+-requirement of an alr1 alr2 double mutant strain. The mnr2 mutation also altered accumulation of other divalent cations, suggesting this mutation may increase Alr gene expression or protein activity. Recent work supported this model, by showing that Alr1 activity was increased in an mnr2 mutant strain, and that the mutation was associated with induction of Alr1 activity at a higher external Mg concentration than was observed for an Mnr2 wild-type strain. These effects were observed without any change in Alr1 protein accumulation, again indicating that Alr1 activity may be regulated directly by the Mg concentration within the cell.MRS2 and Lpe10
Like the ALR genes, the MRS2 gene was cloned and sequenced before it was identified as a Mg2+ transporter. The MRS2 gene was identified in the nuclear genome of yeast in a screen for suppressors of a mitochondrial gene RNA splicing mutation, and was cloned and sequenced by Wiesenberger ''et al.'' (1992). Mrs2p was not identified as a putative Mg2+ transporter until Bui ''et al.'' (1999). Gregan ''et al.'' (2001a) identified LPE10 by homology to MRS2 and showed that both LPE10 and MRS2 mutants altered the Mg2+ content of yeast mitochondria and affected RNA splicing activity in the organelle. Mg2+ transport has been shown to be directly mediated by Mrs2p, but not for Lpe10p. The Mrs2p and Lpe10p proteins are 470 and 413 amino acid residues in size, respectively, and a 250–300 amino acid region in the middle of the proteins shows a weak similarity to the full CorA protein. The TM topologies of the Mrs2p and Lpe10p proteins have been assessed using a protease protection assay and are shown in the figure. TM 1 and 2 correspond to TM 2 and 3 in the CorA protein. The conserved GMN motif is at the outside end of the first TM domain, and when the glycine (G) in this motif was mutated to a cysteine (C) in Mrs2p, Mg2+ transport was strongly reduced. The figure shows the experimentally determined topology of Mrs2p and Lpe10p as adapted from Bui ''et al.'' (1999) and Gregan ''et al.'' (2001a). The GMN motif location is indicated in red and the TM domains in light blue. The orientation in the membrane and the positions of the N- and C-termini are indicated. The various sizes of the soluble domains are given in amino acids (AA), TM domains are numbered, and the figure is not drawn to scale. Mrs2p has been localised to the mitochondrial inner membrane by subcellular fractionation and immunodetection and Lpe10p to the mitochondria. Mitochondria lacking Mrs2p do not show a fast Mg2+ uptake, only a slow ‘leak’, and overaccumulation of Mrs2p leads to an increase in the initial rate of uptake. Additionally, CorA, when fused to the mitochondrial leader sequence of Mrs2p, can partially complement the mitochondrial defect conferred by the loss of either Mrs2p or Lpe10p. Hence, Mrs2p and/or Lpe10p may be the major Mg2+ uptake system for mitochondria. A possibility is that the proteins form heterodimers, as neither protein (when overexpressed) can fully complement the loss of the other. The characteristics of Mg2+ uptake in isolated mitochondria by Mrs2p were quantified using mag-fura 2. The uptake of Mg2+ by Mrs2p shared a number of attributes with CorA. First, Mg2+ uptake was directly dependent on the electric potential (ΔΨ) across the boundary membrane. Second, the uptake is saturated far below that which the ΔΨ theoretically permits, so the transport of Mg2+ by Mrs2p is likely to be regulated in a similar manner to CorA, possibly by the inactivation of the protein. Third, Mg2+ efflux was observed via Mrs2p upon the artificial depolarisation of the mitochondrial membrane by valinomycin. Finally, the Mg2+ fluxes through Mrs2p are inhibited by cobalt (III) hexaammine. The kinetics of Mg2+ uptake by Mrs2p were determined in the Froschauer ''et al.'' (2004) paper on CorA in bacteria. The initial change in free Mg2+ concentration was 150 μM s-1 for wild type and 750 μM s-1 for mitochondria from yeast overexpressing MRS2. No attempt was made to scale the observed transport to the amount of transporter present.Protozoan (''Paramecium'')
The transport of Mg2+ into Paramecium has been characterised largely by R. R. Preston and his coworkers. Electrophysiological techniques on whole Paramecium were used to identify and characterise Mg2+ currents in a series of papers before the gene was cloned by Haynes ''et al.'' (2002). The open reading frame for the XNTA gene is 1707 bp in size, contains two introns and produces a predicted protein of 550 amino acids. The protein has been predicted to contain 11 TM domains and also contains the α1 and α2 motifs (see figure) of the SLC8 ( Na+/Ca2+ exchanger) and SLC24 ( K+ dependent Na+/Ca2+ exchanger) human solute transport proteins. The XntAp is equally similar to the SLC8 and SLC24 protein families by amino acid sequence, but the predicted TM topology is more like that of SLC24, but the similarity is at best weak and the relationship is very distant. The AtMHX protein from plants also shares a distant relationship with the SLC8 proteins. The figure shows the predicted TM topology of XntAp. Adapted from Haynes ''et al.'' (2002), this figure shows the computer predicted membrane topology of XntAp in Paramecium. The orientation in the membrane was determined using HMMTOP. The TM domains are shown in light blue, the α1 and α2 domains are shown in green. The orientation in the membrane and the positions of the N- and C-termini are indicated and the figure is not drawn to scale. The Mg2+-dependent currents carried by XntAp are kinetically like that of a channel protein and have an ion selectivity order of Mg2+ > Co2+, Mn2+ > Ca2+ — a series again very similar to that of CorA. Unlike the other transport proteins reported so far, XntAp is dependent on intracellular Ca2+. The transport is also dependent on ΔΨ, but again Mg2+ is not transported to equilibrium, being limited to approximately 0.4 mM free Mg2+ in the cytoplasm. The existence of an intracellular compartment with a much higher free concentration of Mg2+ (8 mM) was supported by the results.Animals
The investigation of Mg2+ in animals, including humans, has lagged behind that in bacteria and yeast. This is largely because of the complexity of the systems involved, but also because of the impression within the field that Mg2+ was maintained at high levels in all cells and was unchanged by external influences. Only in the last 25 years has a series of reports begun to challenge this view, with new methodologies finding that free Mg2+ content is maintained at levels where changes might influence cellular metabolism.MRS2
A bioinformatic search of the sequence databases identified one homologue of the MRS2 gene of yeast in a range of metazoans. The protein has a very similar sequence and predicted TM topology to the yeast protein, and the GMN motif is intact at the end of the first TM domain. The human protein, hsaMrs2p, has been localised to the mitochondrial membrane in mouse cells using a GFP fusion protein. Very little is known about the Mg2+ transport characteristics of the protein in mammals, but Zsurka ''et al.'' (2001) has shown that the human Mrs2p complements the mrs2 mutants in the yeast mitochondrial Mg2+ uptake system.SLC41 (MgtE)
The identification of this gene family in the metazoa began with a signal sequence trap method for isolating secreted and membrane proteins. Much of the identification has come from bioinformatic analyses. Three genes were eventually identified in humans, another three in mouse and three in ''Caenorhabditis elegans'', with a single gene in ''Anopheles gambiae''. The pFAM database lists the MgtE domain as pFAM01769 and additionally identifies a MgtE domain-containing protein in ''Drosophila melanogaster''. The proteins containing the MgtE domain can be divided into seven classes, as defined by pFAM using the type and organisation of the identifiable domains in each protein. Metazoan proteins are present in three of the seven groups. All of the metazoa proteins contain two MgtE domains, but some of these have been predicted only by context recognition (Coin, Bateman and Durbin, unpublished. See the pFAM website for further details). The human SLC41A1 protein contains two MgtE domains with 52% and 46% respective similarity to the PF01769 consensus sequence and is predicted to contain ten TM domains, five in each MgtE domain (see figure), which suggests that the MgtE protein of bacteria may work as a dimer. Adapted from Wabakken ''et al.'' (2003) and the pFAM database, the figure shows the computer predicted membrane topology of MgtE in ''H. sapiens''. The TM domains are shown in light blue, the orientation in the membrane and the positions of the N- and C-termini are indicated, and the figure is not drawn to scale. Wabakken ''et al.'' (2003) found that the transcript of the SLC41A1 gene was expressed in all human tissues tested, but at varying levels, with the heart and testis having the highest expression of the gene. No explanation of the expression pattern has been suggested with regard to Mg2+-related physiology. It has not been shown whether the SLC41 proteins transport Mg2+ or complement a Mg2+ transport mutation in any experimental system. However, it has been suggested that as MgtE proteins have no other known function, they are likely to be Mg2+ transporters in the metazoa as they are in the bacteria. This will need to be verified using one of the now standard experiment systems for examining Mg2+ transport.TRPM6/ TRPM7
The investigation of the TRPM genes and proteins in human cells is an area of intense recent study and, at times, debate. Montell ''et al.'' (2002) have reviewed the research into the TRP genes, and a second review by Montell (2003) has reviewed the research into the TRPM genes. The TRPM family of ion channels has members throughout the metazoa. The TRPM6 and TRPM7 proteins are highly unusual, containing both an ion channel domain and a kinase domain (Figure 1.7), the role of which brings about the most heated debate. The activity of these two proteins has been very difficult to quantify. TRPM7 by itself appears to be a Ca2+ channel but in the presence of TRPM6 the affinity series of transported cations places Mg2+ above Ca2+. The differences in reported conductance were caused by the expression patterns of these genes. TRPM7 is expressed in all cell types tested so far, while TRPM6 shows a more restricted pattern of expression. An unfortunate choice of experimental system by Voets ''et al.'', (2004) led to the conclusion that TRPM6 is a functional Mg2+ transporter. However, later work by Chubanov ''et al.'' (2004) clearly showed that TRPM7 is required for TRPM6 activity and that the results of Voets ''et al.'' are explained by the expression of TRPM7 in the experimental cell line used by Voets ''et al.'' in their experiments. Whether TRPM6 is functional by itself is yet to be determined. The predicted TM topology of the TPRM6 and TRPM7 proteins has been adapted from Nadler ''et al.'' (2001), Runnels ''et al.'' (2001) and Montell ''et al.'' (2002), this figure shows the computer predicted membrane topology of the TRPM6 and TRPM7 proteins in ''Homo sapiens''. At this time, the topology shown should be considered a tentative hypothesis. The TM domains are shown in light blue, the pore loop in purple, the TRP motif in red and the kinase domain in green. The orientation in the membrane and the positions of the N- and C-termini are indicated and the figure is not drawn to scale. The conclusions of the Voets ''et al.'' (2004) paper are probably incorrect in attributing the Mg2+ dependent currents to TRPM7 alone, and their kinetic data are likely to reflect the combined TRPM7/ TRPM6 channel. The report presents a robust collection of data consistent with a channel-like activity passing Mg2+, based on both electrophysiological techniques and also mag-fura 2 to determine changes in cytoplasmic free Mg2+.Paracellular transport
Plants
The current knowledge of the molecular mechanisms for Mg2+ transport in plants is very limited, with only three publications reporting a molecular basis for Mg2+ transport in plants. However, the importance of Mg2+ to plants has been well described, and physiological and ecophysiological studies about the effects of Mg2+ are numerous. This section will summarise the knowledge of a gene family identified in plants that is distantly related to CorA. Another gene, a Mg2+/H+ exchanger (AtMHX), unrelated to this gene family and to CorA has also been identified, is localised to the vacuolar membrane, and will be described last.The AtMRS2 gene family
Schock ''et al.'' (2000) identified and named the family AtMRS2 based on the similarity of the genes to the MRS2 gene of yeast. The authors also showed that the AtMRS2-1 gene could complement a Δmrs2 yeast mutant phenotype. Independently, Li ''et al.'' (2001) published a report identifying the family and showing that two additional members could complement Mg2+ transport deficient mutants, one in ''S. typhimurium'' and the other in ''S. cerevisiae''. The three genes that have been shown to transport Mg2+ are AtMRS2-1, AtMRS2-10 and AtMRS2-11, and these genes produce proteins 442, 443 and 459 amino acids in size, respectively. Each of the proteins shows significant similarity to Mrs2p of yeast and a weak similarity to CorA of bacteria, contains the conserved GMN amino acid motif at the outside end of the first TM domain, and is predicted to have two TM domains. The AtMRS2-1 gene, when expressed in yeast from the MRS2 promoter and being fused C-terminally to the first 95 amino acids of the Mrs2p protein, was directed to the mitochondria, where it complemented a Δmrs2 mutant both phenotypically (mitochondrial RNA splicing was restored) and with respect to the Mg2+ content of the organelle. No data on the kinetics of the transport was presented. The AtMRS2-11 gene was analysed in yeast (in the alr1 alr2 strain), where it was shown that expression of the gene significantly increased the rate of Mg2+ uptake into starved cells over the control, as measured using flame atomic absorption spectroscopy of total cellular Mg2+ content. However, Alr1p was shown to be significantly more effective at transporting Mg2+ at low extracellular concentrations, suggesting that the affinity of AtMRS2-11 for Mg2+ is lower than that of Alr1p. An electrophysiological (voltage clamp) analysis of the AtMRS2-11 protein in Xenopus oocytes also showed a Mg2+-dependent current at membrane potentials (ΔΨ) of –100 – –150 mV inside. These values are physiologically significant, as several membranes in plants maintain ΔΨ in this range. However, the author had difficulty reproducing these results due to an apparent "death" of oocytes containing the AtMRS2-11 protein, and therefore these results should be viewed with caution. The AtMRS2-10 transporter has been analysed using radioactive tracer uptake analysis. 63Ni2+ was used as the substitute ion and Mg2+ was shown to inhibit the uptake of 63Ni2+ with a Ki of 20 μM. Uptake was also inhibited by Co(III)Hex and by other divalent cations. Only Co2+ and Cu2+ inhibited transport with Ki values less than 1 mM. The AtMRS2-10 protein was fused to GFP, and was shown to be localised to the plasma membrane. A similar experiment was attempted in the Schock ''et al.'' (2000) paper, but the observed localisation was not significantly different from that seen with unfused GFP. The most likely reason for the lack of a definitive localisation of AtMRS2-1 in the Schock ''et al.'' paper is that the authors removed the TM domains from the protein, thereby precluding its insertion into a membrane. The exact physiological significance of the AtMRS2-1 and AtMRS2-10 proteins in plants has yet to be clarified. The AtMRS2-11 gene has been overexpressed (from the CaMV 35S promoter) in A. thaliana. The transgenic line has been shown to accumulate high levels of the AtMRS2-11 transcript. A strong Mg2+ deficiency phenotype (necrotic spots on the leaves, see Chapter 1.5 below) was recorded during the screening process (in both the T1 and T2 generations) for a homozygote line, but this phenotype was lost in the T3 generation and could not be reproduced when the earlier generations were screened a second time. The author suggested that environmental effects were the most likely cause of the inconsistent phenotype.AtMHX
The first magnesium transporter isolated in any multicellular organism, AtMHX shows no similarity to any previously isolated Mg2+ transport protein. The gene was initially identified in the A. thaliana genomic DNA sequence database, by its similarity to the SLC8 family of Na+/Ca2+ exchanger genes in humans. The cDNA sequence of 1990 bp is predicted to produce a 539-amino acid protein. AtMHX is quite closely related to the SLC8 family at the amino acid level and shares a topology with eleven predicted TM domains (Figure A10.5). There is one major difference in the sequence, in that the long non-membranal loop (see Figure A10.5) is 148 amino acids in the AtMHX protein but 500 amino acids in the SLC8 proteins. However, this loop is not well conserved and is not required for transport function in the SLC8 family. The AtMHX gene is expressed throughout the plant but most strongly in the vascular tissue. The authors suggest that the physiological role of the protein is to store Mg2+ in these tissues for later release when needed. The protein localisation to the vacuolar membrane supports this suggestion (see also Chapter 1.5). The protein transports Mg2+ into the vacuolar space and H+ out, as demonstrated by electrophysiological techniques. The transport is driven by the ΔpH maintained between the vacuolar space (pH 4.5 – 5.9) and the cytoplasm (pH 7.3 – 7.6) by an H+-ATPase. How the transport of Mg2+ by the protein is regulated was not determined. Currents were observed to pass through the protein in both directions, but the Mg2+ out current required a ‘cytoplasmic’ pH of 5.5, a condition not found in plant cells under normal circumstances. In addition to the transport of Mg2+, Shaul ''et al.'' (1999) also showed that the protein could transport Zn2+ and Fe2+, but did not report on the capacity of the protein to transport other divalent cations (e.g. Co2+ and Ni2+) or its susceptibility to inhibition by cobalt (III) hexaammine. The detailed kinetics of Mg2+ transport have not been determined for AtMHX. However, physiological effects have been demonstrated. When A. thaliana plants were transformed with overexpression constructs of the AtMHX gene driven by the CaMV 35S promoter, the plants over-accumulated the protein and showed a phenotype of necrotic lesions in the leaves, which the authors suggest is caused by a disruption in the normal function of the vacuole, given their observation that the total Mg2+ (or Zn2+) content of the plants was not altered in the transgenic plants. The image has been adapted from Shaul ''et al.'' (1999) and Quednau et al. (2004), and combined with an analysis using HMMTOP, this figure shows the computer predicted membrane topology of the AtMHX protein in ''Arabidopsis thaliana''. At this time the topology shown should be considered a tentative hypothesis. The TM domains are shown in light blue, the orientation in the membrane and the positions of the N- and C-termini are indicated, and the figure is not drawn to scale. The α1 and α2 domains, shown in green, are both quite hydrophobic and may both be inserted into the membrane.References
{{DEFAULTSORT:Magnesium Transporter Biology and pharmacology of chemical elements Ion channels Physiology Magnesium Membrane biology