Magnesium alloys are mixtures of
magnesium
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
(the lightest structural metal) with other metals (called an
alloy
An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
), often
aluminium
Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
,
zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
,
manganese
Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
,
silicon
Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
,
copper
Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
,
rare earths
The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silve ...
and
zirconium
Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'', ...
. Magnesium alloys have a
hexagonal lattice
The hexagonal lattice or triangular lattice is one of the five two-dimensional Bravais lattice types. The symmetry category of the lattice is wallpaper group p6m. The primitive translation vectors of the hexagonal lattice form an angle of 120° ...
structure, which affects the fundamental properties of these alloys.
Plastic deformation
In engineering, deformation refers to the change in size or shape of an object. ''Displacements'' are the ''absolute'' change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain ...
of the hexagonal lattice is more complicated than in
cubic latticed metals like aluminium, copper and
steel
Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
; therefore, magnesium alloys are typically used as
cast
Cast may refer to:
Music
* Cast (band), an English alternative rock band
* Cast (Mexican band), a progressive Mexican rock band
* The Cast, a Scottish musical duo: Mairi Campbell and Dave Francis
* ''Cast'', a 2012 album by Trespassers William
* ...
alloys, but research of
wrought alloys has been more extensive since 2003. Cast magnesium alloys are used for many components of modern
automobile
A car or automobile is a motor vehicle with Wheel, wheels. Most definitions of ''cars'' say that they run primarily on roads, Car seat, seat one to eight people, have four wheels, and mainly transport private transport#Personal transport, pe ...
s and have been used in some
high-performance vehicles;
die-cast
Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly t ...
magnesium is also used for camera bodies and components in
lens
A lens is a transmissive optical device which focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
es.
Practically, all the commercial magnesium alloys manufactured in the
United States
The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territorie ...
contain aluminium (3 to 13 percent) and manganese (0.1 to 0.4 percent). Many also contain zinc (0.5 to 3 percent) and some are
hardenable by
heat treatment
Heat treating (or heat treatment) is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also ...
.
All the alloys may be used for more than one product form, but alloys AZ63 and AZ92 are most used for
sand casting
Sand casting, also known as sand molded casting, is a metal casting process characterized by using sand as the mold material. The term "sand casting" can also refer to an object produced via the sand casting process. Sand castings are produced i ...
s, AZ91 for
die castings, and AZ92 generally employed for permanent mold castings (while AZ63 and A10 are sometimes also used in the latter application as well). For
forging
Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer (often a power hammer) or a die. Forging is often classified according to the temperature at which i ...
s, AZ61 is most used, and here alloy M1 is employed where low strength is required and AZ80 for highest strength. For
extrusion
Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex c ...
s, a wide range of shapes, bars, and tubes are made from M1 alloy where low strength suffices or where
welding
Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing Fusion welding, fusion. Welding is distinct from lower ...
to M1 castings is planned. Alloys AZ31, AZ61 and AZ80 are employed for extrusions in the order named, where increase in strength justifies their increased relative costs.
Magnox (alloy)
Magnox is an alloy—mainly of magnesium with small amounts of aluminium and other metals—used in cladding unenriched uranium metal fuel with a non-oxidising covering to contain fission products in nuclear reactors.
Magnox is short for Ma ...
, whose name is an abbreviation for "magnesium non-oxidizing", is 99% magnesium and 1% aluminium, and is used in the cladding of fuel rods in
magnox nuclear power reactors.
Magnesium alloys are referred to by short codes (defined in
ASTM B275) which denote approximate chemical compositions by weight. For example, AS41 has 4% aluminum and 1% silicon; AZ81 is 7.5% aluminium and 0.7% zinc. If aluminium is present, a manganese component is almost always also present at about 0.2% by weight which serves to improve grain structure; if aluminum and manganese are absent, zirconium is usually present at about 0.8% for this same purpose. Magnesium is a flammable material and must be handled carefully.
Designation
Magnesium alloys names are often given by two letters following by two numbers. Letters tell main alloying elements (A = aluminium, Z = zinc, M = manganese, S = silicon). Numbers indicate respective nominal compositions of main alloying elements. Marking AZ91 for example conveys magnesium alloy with roughly 9
weight percent aluminium and 1 weight percent zinc. Exact composition should be confirmed from reference standards.
The designation system for magnesium alloys is not as well standardized as in the case of steels or aluminium alloys; most producers follow a system using one or two prefix letters, two or three numerals, and a suffix letter. The prefix letters designate the two principal alloying metals according to the following format developed in
ASTM specification B275, as shown in the table at right.
Aluminium, zinc, zirconium, and
thorium
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high me ...
promote
precipitation hardening
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and ...
: manganese improves corrosion resistance;
and tin improves castability. Aluminium is the most common alloying element. The numerals correspond to the rounded-off percentage of the two main alloy elements, proceeding alphabetically as compositions become standard.
Temper
Temper, tempered or tempering may refer to:
Heat treatment
* Tempering (metallurgy), a heat treatment technique to increase the toughness of iron-based alloys
** Temper mill, a steel processing line
* Tempering (spices), a cooking technique where ...
designation is much the same as in the case of aluminium. Using –F, -O, -H1, -T4, -T5, and –T6.
Sand permanent-mold, and
die casting
Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly t ...
are all well developed for magnesium alloys,
die casting
Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly t ...
being the most popular. Although magnesium is about twice as expensive as aluminium, its hot-chamber
die-casting
Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly ...
process is easier, more economical, and 40% to 50% faster than cold-chamber process required for aluminium. Forming behavior is poor at room temperature, but most conventional processes can be performed when the material is heated to temperatures of . As these temperatures are easily attained and generally do not require a protective atmosphere, many formed and
drawn magnesium products are manufactured. The
machinability Machinability is the ease with which a metal can be cut (machined) permitting the removal of the material with a satisfactory finish at low cost.Degarmo, p. 542. Materials with good machinability (free machining materials) require little power to c ...
of magnesium alloys is the best of any commercial metal, and in many applications, the savings in machining costs more than compensate for the increased cost of the material. It is necessary, however, to keep the tools sharp and to provide ample space for the chips. Magnesium alloys can be spot-
welded
Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as braz ...
nearly as easily as aluminium, but scratch brushing or chemical cleaning is necessary before the weld is formed. Fusion welding is carried out most easily by processes using an inert shielding atmosphere of argon or helium gas. Considerable misinformation exists regarding the fire hazard in processing magnesium alloys. It is true that magnesium alloys are highly combustible when in a finely divided form, such as powder or fine chips, and this hazard should never be ignored. Above , a non-combustible, oxygen-free atmosphere is required to suppress burning. Casting operations often require additional precautions because of the reactivity of magnesium with sand and water in sheet, bar,
extruded
Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex c ...
or cast form; however, magnesium alloys present no real fire hazard.
Thorium-containing alloys are not usually used, since a thorium content of more than 2% requires that a component be handled as a radioactive material, although thoriated magnesium known as
Mag-Thor
Mag-Thor is the common name for a range of magnesium (Mg) alloys containing thorium (Th) that are used in aerospace engineering.
Alloys
These alloys commonly contain manganese and zinc, but there are other combinations known. Some common alloys ar ...
was used in military and aerospace applications in the 1950s.
Magnesium alloys are used for both cast and forged components, with the aluminium-containing alloys usually used for casting and the zirconium-containing ones for forgings; the zirconium-based alloys can be used at higher temperatures and are popular in aerospace.
Magnesium+yttrium+rare-earth+zirconium alloys such as WE54 and WE43 (the latter with composition Mg 93.6%, Y 4%, Nd 2.25%, 0.15% Zr) can operate without creep at up to 300C and are reasonably corrosion-resistant.
Trade names have sometimes been associated with magnesium alloys. Examples are:
*
Elektron
*
Magnox
Magnox is a type of nuclear power/production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The n ...
*
Magnuminium
*
Mag-Thor
Mag-Thor is the common name for a range of magnesium (Mg) alloys containing thorium (Th) that are used in aerospace engineering.
Alloys
These alloys commonly contain manganese and zinc, but there are other combinations known. Some common alloys ar ...
*
Metal 12
*
Birmabright
Birmabright is a trade name of the former Birmetals Co. (Birmabright works in Clapgate Lane, Quinton, Birmingham, UK) for various types of lightweight sheet metal in an alloy of aluminium and magnesium. The alloy was introduced by the Birmid Grou ...
*
Magnalium
Magnalium is an aluminium alloy with 5% magnesium and 95% aluminum.
Properties
Alloys with small amounts of magnesium (about 5%) exhibit greater strength, greater corrosion resistance, and lower density than pure aluminium. Such alloys are also mo ...
Cast alloys
Magnesium casting
proof stress is typically 75–200 MPa,
tensile strength
Ultimate tensile strength (UTS), often shortened to tensile strength (TS), ultimate strength, or F_\text within equations, is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials t ...
135–285 MPa and elongation 2–10%. Typical
density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
is 1.8 g/cm
3 and
Young's modulus
Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied leng ...
is 42 GPa. Most common cast alloys are:
: AZ63
: AZ81
: AZ91
: AM50
: AM60
: ZK51
: ZK61
: ZE41
: ZC63
: HK31
: HZ32
: QE22
: QH21
: WE54
: WE43
: Elektron 21
Wrought alloys
Magnesium wrought alloy proof stress is typically 160-240 MPa, tensile strength is 180-440 MPa and elongation is 7-40%.
The most common wrought alloys are:
: AZ31
: AZ61
: AZ80
: Elektron 675
: ZK60
: M1A
: HK31
: HM21
: ZE41
: ZC71 ZM21 AM40 AM50 AM60 K1A M1 ZK10 ZK20 ZK30 ZK40
Wrought magnesium alloys have a special feature. Their compressive proof strength is smaller than tensile proof strength. After forming, wrought magnesium alloys have a stringy texture in the deformation direction, which increases the tensile proof strength. In compression, the proof strength is smaller because of
crystal twinning
Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly ...
,
[ which happens more easily in compression than in tension in magnesium alloys because of the hexagonal lattice structure.
Extrusions of rapidly solidified powders reach tensile strengths of up to 740 MPa due to their ]amorphous
In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal.
Etymology
The term comes from the Greek ''a'' ("wi ...
character, which is twice as strong as the strongest traditional magnesium alloys and comparable to the strongest aluminium alloy
An aluminium alloy (or aluminum alloy; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal ...
s.
Compositions table
Characteristics
Magnesium's particular merits are similar to those of aluminium alloys: low specific gravity with satisfactory strength. Magnesium provides advantages over aluminium, in being of even lower density (approx. 1800 kg/m3) than aluminium (about 2800 kg/m3). The mechanical properties of magnesium alloys tend to be below those of the strongest of the aluminium alloys.
The strength-to-weight ratio of the precipitation-hardened magnesium alloys is comparable with that of the strong alloys of aluminium or with the alloy steels. Magnesium alloys, however, have a lower density, stand greater column loading per unit weight and have a higher specific modulus
Specific modulus is a materials property consisting of the elastic modulus per mass density of a material. It is also known as the stiffness to weight ratio or specific stiffness. High specific modulus materials find wide application in aerospace a ...
. They are also used when great strength is not necessary, but where a thick, light form is desired, or when higher stiffness
Stiffness is the extent to which an object resists deformation in response to an applied force.
The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.
Calculations
The stiffness, k, of a b ...
is needed. Examples are complicated castings, such as housings or cases for aircraft, and parts for rapidly rotating or reciprocating machines. Such applications can induce cyclic crystal twinning
Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly ...
and detwinning that lowers yield strength under loading direction change.[
The strength of magnesium alloys is reduced at somewhat elevated temperatures; temperatures as low as produce considerable reduction in the yield strength. Improving the high-temperature properties of magnesium alloys is an active research area with promising results.]
Magnesium alloys show strong anisotropy and poor formability at room temperature stemming from their hexagonal close-packed crystal structure, limiting practical processing modes.[ At room temperature, basal plane slip of dislocation and mechanical ]crystal twinning
Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly ...
are the only operating deformation mechanisms; the presence of twinning additionally requires specific loading conditions to be favorable.[ For these reasons processing of magnesium alloys must be done at high temperatures to avoid brittle fracture.]
The high-temperature properties of magnesium alloys are relevant for automotive and aerospace applications, where slowing creep (deformation)
In materials science, creep (sometimes called cold flow) is the tendency of a solid material to move slowly or deform permanently under the influence of persistent mechanical stresses. It can occur as a result of long-term exposure to high leve ...
plays an important role in material lifetime. Magnesium alloys generally have poor creep properties; this shortcoming is attributed to the solute additions rather than the magnesium matrix since pure magnesium shows similar creep life as pure aluminum, but magnesium alloys show decreased creep life compared to aluminum alloys. Creep in magnesium alloys occurs mainly by dislocation slip (materials science)
In materials science, slip is the large displacement of one part of a crystal relative to another part along crystallographic planes and directions. Slip occurs by the passage of dislocations on close/packed planes, which are planes containing ...
, activated cross slip
Cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of screw dislocations. Non-planar movement of edge dislocations is achieved through climb.
Since the ...
, and grain boundary sliding. Addition of small amounts of zinc in Mg-RE alloys has been shown to increase creep life by 600% by stabilizing precipitates on both basal and prismatic planes through localized bond stiffening. These developments have allowed for magnesium alloys to be used in automotive and aerospace applications at relatively high temperatures. Microstructural changes at high temperatures are also influenced by Dynamic recrystallization
Dynamic recrystallization (DRX) is a type of recrystallization process, found within the fields of metallurgy and geology. In dynamic recrystallization, as opposed to static recrystallization, the nucleation and growth of new grains occurs during ...
in fine-grained magnesium alloys.[
Individual contributions of gadolinium and yttrium to ]age hardening
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and so ...
and high temperature strength of magnesium alloys containing both elements are investigated using alloys containing different Gd:Y mole ratios of 1:0, 1:1, 1:3, and 0:1 with a constant Y+Gd content of 2.75 mol%. All investigated alloys exhibit remarkable age hardening by precipitation of β phase with DO19 crystal structure and β phase with BCO crystal structure, even at aging temperatures higher than 200 °C. Both precipitates are observed in peak-aged specimens. The precipitates contributing to age hardening are fine and their amount increases as Gd content increases, and this result in increased peak hardness, tensile strength and 0.2% proof stress but decreased elongation. On the other hand, higher Y content increases the elongation of the alloys but results in decreased strength.
Despite the active nature of the metal, magnesium and its alloys have good resistance to corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
in air at STP. The rate of corrosion is slow compared with rusting of mild steel in the same atmosphere. Immersion in salt water is problematic, but a great improvement in resistance to salt-water corrosion has been achieved, especially for wrought materials, by reducing some impurities particularly nickel and copper to very low proportions or using appropriate coatings.
Fabrication
Hot and cold working
Magnesium alloys harden rapidly with any type of cold work, and therefore cannot be extensively cold formed without repeated annealing. Sharp bending, spinning, or drawing must be done at about , although gentle bending around large radii can be done cold. Slow forming gives better results than rapid shaping. Press forging
Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer (often a power hammer) or a die. Forging is often classified according to the temperature at which i ...
is preferred to hammer forging, because the press allows greater time for metal flow. The plastic forging range is . Metal worked outside this range is easily broken due to lack of available deformation mechanisms.
Casting
Magnesium alloys, especially precipitation-hardened alloys, are used in casting
Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a ''casting'', which is ejected ...
. Sand, permanent mold and die casting
Die casting is a metal casting process that is characterized by forcing molten metal under high pressure into a mold cavity. The mold cavity is created using two hardened tool steel dies which have been machined into shape and work similarly t ...
methods are used, but plaster-of-Paris casting has not yet been perfected. Sand casting in green-sand molds requires a special technique, because the magnesium reacts with moisture in the sand, forming magnesium oxide and liberating hydrogen. The oxide forms blackened areas called burns on the surface of the casting, and the liberated hydrogen may cause porosity. Inhibitors such as sulfur, boric acid, ethylene glycol, or ammonium fluoride are mixed with the damp sand to prevent the reaction. All gravity-fed molds require an extra high column of molten metal to make the pressure great enough to force gas bubbles out of the casting and make the metal take the detail of the mold. The thickness of the casting wall should be at least 5/32 in. under most conditions. Extra-large fillets must be provided at all re-entrant corners, since stress concentration in magnesium castings are particularly dangerous.
Permanent mold castings are made from the same alloys and have about the same physical properties as sand castings. Since the solidification shrinkage of magnesium is about the same as that of aluminium, aluminium molds can often be adapted to make magnesium-alloy castings (although it may be necessary to change the gating).
Pressure cold-chamber castings are used for quantity production of small parts. The rapid solidification caused by contact of the fluid metal with the cold die produces a casting of dense structure with excellent physical properties. The finish and dimensional accuracy are very good, and machining is necessary only where extreme accuracy is required. Usually these castings are not heat treated.
Welding, soldering, and riveting
Many standard magnesium alloys are easily welded
Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as braz ...
by gas or resistance-welding equipment, but cannot be cut with an oxygen torch. Magnesium alloys are not welded to other metals, because brittle inter-metallic compounds may form, or because the combination of metals may promote corrosion. Where two or more parts are welded together, their compositions must be the same. Soldering
Soldering (; ) is a process in which two or more items are joined by melting and putting a filler metal (solder) into the joint, the filler metal having a lower melting point than the adjoining metal. Unlike welding, soldering does not involv ...
of magnesium alloys is feasible only for plugging surface defects in parts. The solders are even more corrosive than with aluminium, and the parts should never be required to withstand stress. Rivet
A rivet is a permanent mechanical fastener. Before being installed, a rivet consists of a smooth cylindrical shaft with a head on one end. The end opposite to the head is called the ''tail''. On installation, the rivet is placed in a punched ...
ed joints in magnesium alloy structures usually employ aluminium or aluminium-magnesium alloy rivets. Magnesium rivets are not often used because they must be driven when hot. The rivet holes should be drilled, especially in heavy sheet and extruded sections, since punching tends to give a rough edge to the hole and to cause stress concentrations.
Machining
A particular attraction of magnesium alloys lies in their extraordinarily good machining
Machining is a process in which a material (often metal) is cut to a desired final shape and size by a controlled material-removal process. The processes that have this common theme are collectively called subtractive manufacturing, which utilizes ...
properties, in which respect they are superior even to screwing brass. The power required in cutting them is small, and extremely high speeds (5000 ft per min in some cases) may be used. The best cutting tools have special shapes, but the tools for machining other metals can be used, although somewhat lower efficiency results. When magnesium is cut at high speed, the tools should be sharp and should be cutting at all times. Dull, dragging tools operating at high speed may generate enough heat to ignite fine chips. Since chips and dust from grinding can therefore be a fire hazard, grinding should be done with a coolant, or with a device to concentrate the dust under water. The magnesium grinder should not be used also for ferrous metals, since a spark might ignite the accumulated dust. If a magnesium fire should start, it can be smothered with cast-iron turnings or dry sand, or with other materials prepared especially for the purpose. Water or liquid extinguishers should never be used, because they tend to scatter the fire. Actually, it is much more difficult to ignite magnesium chips and dust than is usually supposed, and for that reason they do not present great machining difficulties. The special techniques that must be used in fabricating magnesium (working, casting, and joining) add considerably to the manufacturing cost. In selecting between aluminium and magnesium or a given part, the base cost of the metal may not give much advantage to either, but usually the manufacturing operations make magnesium more affordable. There is, perhaps, no group of alloys where extrusion is more important than it is to these, since the comparatively coarse-grained structure of the cast material makes most of them too susceptible to cracking to work by other means until sufficient deformation has been imparted to refine the grain. Therefore, except for one or two soft alloys, machining is invariably a preliminary step before other shaping processes.
Hot extrusion
Not much pure magnesium is extrude
Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex ...
d, for it has somewhat poor properties, especially as regards its proof stress. The alloying elements of chief concern at present are aluminium, zinc, cerium and zirconium; manganese is usually also present since, though it has little effect on the strength, it has a valuable function in improving corrosion resistance. One important binary alloy, containing up to 2.0% manganese, is used extensively for the manufacture of rolled sheet. It is comparatively soft and easier to extrude than other alloys, and is also one of the few that can be rolled directly without pre-extrusion.
In the UK, extrusions are made from billets of dia. On presses varying in power over the range 600-3500 tons; normal maximum pressures on the billet are 30-50 tons/sq. in the U.S the Dow chemical company have recently installed a 13.200 ton press capable of handling billets up to 32 in. Extrusion technique is generally similar to that for aluminium base alloys but, according to Wilkinson and fox, die design requires special consideration and, in their opinion, should incorporate short bearing lengths and sharp die entries. Tube extrusion in alloys AM503, ZW2, and ZW3 is now made with bridge dies. (The aluminium-bearing alloys do not weld satisfactorily.) In contrast to the previous practice of using bored billets, mandrel piercing is now used in the extrusion of large diameter tubes in ZW3 alloy.
The stiffness of the alloys towards extrusion is increased in proportion to the amount of hardening elements they contain, and the temperature employed is generally higher the greater the quantity of these. Billet temperatures are also affected by the size of the sections, being higher for heavy reductions, but are usually in the range . Container temperatures should be identical with, or only slightly higher than billet temperature. Pre-heating of the billets must be carried out uniformly to promote as far as possible a homogeneous structure by absorption of compounds, such as Mg4Al, present in the alloys.
Fox points out and this is also applicable to aluminium alloys. The initial structure of the billet is important, and casting methods that lead to fine grain are worthwhile. In coarse material, larger particles of the compounds are present that are less readily dissolved, and tend to cause a solution gradient. In magnesium alloys, this causes internal stress, since solution is accompanied by a small contraction, and it can also influence the evenness of response to later heat treatment.
The binary magnesium-manganese alloy (AM505) is readily extruded at low pressures in the temperature range ., the actual temperature used depending upon the reduction and billet length rather than the properties desired, which are relatively insensitive to extrusion conditions. Good surface condition of the extrusion is achieved only with high speeds, of the order of 50–100 ft. per minute.
With the aluminium and zinc containing alloys, and particularly those with the higher aluminium contents such as AZM and AZ855 difficulties arise at high speeds due to hot-shortness.
Under conditions approaching equilibrium magnesium is capable of dissolving about 12 per cent aluminium, but in cast billets 4-5 per cent usually represents the limit of solubility. Alloys containing 6 per cent Al or more therefore contain Mg4Al3, which forms a eutectic melting at 435 C. The extrusion temperature may vary from , but at the higher values speeds are restricted to about 12 ft. per minute. Continuous casting improves the homogeneity of these alloys and water cooling of the dies or taper heating of the billets further facilities their extrusion.
Introduction of the magnesium-zinc-zirconium alloys, ZW2 and ZW3, represents a considerable advance in magnesium alloy technology for a number of reasons. They are high strength, but, since they do not contain aluminium, the cast billet contains only small quantities of the second phase. Since the solidus temperature is raised by about , the risk of hotshortness at relatively high extrusion speeds is much reduced. However, the mechanical properties are sensitive to billet preheating time, temperature and extrusion speed, Long preheating times and high temperatures and speeds produces properties similar to those in older aluminium-containing alloys, Heating times must be short and temperatures and speeds low to produce high properties. Increasing zinc content to 5 or 6 per cent, as in the American alloy ZK60 and ZK61, reduces sensitivity to extrusion speed in respect of mechanical properties.
Alloying of zirconium-bearing materials has been a major problem in their development. It is usual to add the zirconium from a salt—and careful control can produce good results. Dominion Magnesium Limited in Canada have developed a method adding in the conventional manner through a master alloy.
Explanation for the low extrusion rates necessary to successfully extrude some magnesium alloys does not lie outside reasons put forward for other metals. Altwicker considers that the most significant cause is connected. With the degree of recovery from crystal deformation, which is less complete when work is applied quickly, causing higher stresses and the exhausting of the capacity for slip in the crystals. This is worthy of consideration, for the speed of re-crystallization varies from one metal to another, and according to temperature. It is also a fact that a metal worked in what is considered its working range can frequently be made to show marked work hardening if quenched immediately after deformation—showing that temporary loss of plasticity can easily accompany rapid working.
Further alloy development
Scandium
Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
and gadolinium
Gadolinium is a chemical element with the symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is only slightly malleable and is a ductile rare-earth element. Gadolinium reacts with atmospheric oxygen ...
have been tried as alloying elements; an alloy with 1% manganese, 0.3% scandium and 5% gadolinium offers almost perfect creep resistance at 350C. The physical composition of these multi-component alloys is complicated, with plates of intermetallic compounds such as Mn2Sc forming. Addition of zinc to Mg-RE alloys has been shown to greatly increase creep life by stabilizing RE precipitates. Erbium has also been considered as an additive.
Magnesium–lithium alloys
Adding 10% of lithium to magnesium produces an alloy that can be used as an improved anode in batteries with a manganese-dioxide cathode. Magnesium-lithium alloys are generally soft and ductile, and the density of 1.4 g/cm3 is appealing for space applications.
Quantum mechanical simulations have been used to predict the formation of ordered magnesium–lithium alloys. Of interest relative to manufacturing, it is predicted that addition of more than 13 at. % lithium results in ordered phases with a cubic structure.
Non-combustible magnesium alloys
Adding 2% of calcium by weight to magnesium alloy AM60 results in the non-combustible magnesium alloy AMCa602. The higher oxidation reactivity of calcium causes a coat of calcium oxide to form before magnesium ignites. The ignition temperature of the alloy is elevated by 200–300 K. An oxygen-free atmosphere is not necessary for machining operations.
References
{{DEFAULTSORT:Magnesium Alloy
Aluminium–magnesium alloys